Paul Steimle, Associate Professor
The broad goal of my research at UNCG is to gain further insight into how cells are able to achieve highly coordinated changes in shape that are required for critical cellular processes such as chemotaxis, cytokinesis, intracellular trafficking, and multicellular development. To this end, I use the social amoeba, Dictyostelium discoideum, as a model system for examining the molecular pathways regulating the ability of myosin II to mediate contraction of actin filaments in the highly dynamic context of a nonmuscle cell. More specifically, we have focused much of our attention on identifying factors that regulate the activity of an enzyme called myosin heavy chain kinase A (MHCK-A). MHCK-A plays a central role in regulating Dictyostelium cellular contraction by catalyzing the disassembly of myosin II filaments; the functional consequence of filament disassembly is the inactivation of myosin II-mediated contraction of the cell. The long term goal of my research program is to provide a clearer understanding of the molecular events driving cellular contractile processes since defects in the regulation of these events, as occur in cancer cells, can lead to uncontrolled cell multiplication (tumor formation) and unregulated cell migration observed with metastasis. |
Recent Publications: Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR. Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. (2012) Journal of Cell Science. 125(Pt 20):4934-44. |
Classes:
Principles of Biology I (BIO 111) |
Contact: 102 Eberhart Building |

Research: