Algorithms

Part 2: Time Complexity

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Last Time We Saw...

Problems are defined by input/output relation, with no reference to how they are solved (focus is on what)

Algorithms are well-defined computational procedures that solve problems (focus is on how)

In BYOB

Problem Focus

Algorithm Focus

Question: What kinds of properties?
Algorithm Characteristics

- Does the algorithm work correctly (does it solve the problem)?
- Is the answer provided precise?
- How confident are you in the correctness of the algorithm and implementation (simpler algorithms are easier to verify)?
- How much memory does the algorithm require?
- How fast is the algorithm?

Assume no problems with correctness or precision for now.

Memory is a problem for some algorithms, but not as common a limiting factor as...

Time is usually the most interesting and limiting characteristic, whether talking about running a big computation for a week, or calculating a new graphics frame in 1/30 of a second.

What is "time" for an Algorithm?

Time is time, right?

But...
- Does time depend on things other than the algorithm?
- If run many times (on the same input), is time always the same?
- If QuickSort runs in 20 seconds on my old IBM PC, and SelectionSort runs in 0.5 seconds on my current computer, is SelectionSort a faster algorithm?
- Can we give clock time without implementing the algorithm?
Correcting for vagueness of timing

Wall-clock times depend on:
● Speed of computer that it's run on
● What else is happening on the computer
● ... and a few other things we'll address later

But... these are not differences in algorithms!

Solution: Algorithms are sequences of steps, so count steps!

Question: What's a step?

BYOB blocks and "steps"

Which of these should not be treated as "one step"?

a)

b)

c)

d)

e)

Experimenting with timing BYOB scripts

Timer is available to help test things out
● Reset timer to start it at zero

● Save current timer value into a variable for "lap timer"

● Watch variable shows limited precision - for more use "say"

● Tip: surround only what you're interested in timing with reset/set blocks (not initializations)
Constant time

We say a script (or part of a script or block definition) takes **constant time** if it is a constant (usually small) number of basic steps, regardless of input.

Question: Are all of these constant time?

What about loops?

The number repetitions depends on length of "values"
- So this is not constant time...

Constant time operations, repeated "length of input" times is **linear time**

Mathematically: Constant time loop body is time "c"
Repeated "n" times where n is length of list
Total time is then c*n (that's a linear function!)

General list index iterator pattern

On previous slide:
- Time was expressed as a function of input size
- Could write time as T(n) = c*n

In general:

We know how many times it repeats, and all basic blocks are constant time except perhaps our "do something..." block
- In general, if time for "do something..." block is T(n), then time for complete script with loop is n*T(n)
- If "do something" is constant time, total time is c*n (linear)
- It "do something" is linear time, total time is c*n^2 (quadratic)
Two challenges

What's the time complexity?

Another challenge

The following predicate tests whether a list has any duplicates:

Question: What's the time complexity?

Predicting Program Times - Linear

Basic idea: Given time complexity and sample time(s) can estimate time on larger inputs

Linear time: When input size doubles, time doubles
 When input size triples, time triples
 When input size goes up by a factor of 10, so does time

Example: A linear time algorithm runs in 10 sec on input size 10,000
 How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
 Therefore 100 times larger time, or 10 * 100 = 1,000 sec
 Or 1,000 / 60 = 16.667 minutes
Predicting Program Times - Quadratic

Basic idea: Given time complexity and sample time(s) can estimate time on larger inputs

Quadratic time: When input size doubles (2x), time quadruples (4x)
 Input size goes up by a factor of 10, time goes up $10^2=100$ times
 Input size goes up k times, time goes up k^2 times

Example: A quadratic time algorithm runs in 10 sec on input size 10,000
 How long to run on input size 1,000,000?

Answer: $1,000,000 / 10,000 = 100$ times larger input
 Therefore $100^2 = 10,000$ times larger time, or 100,000 sec
 Or 100,000 / 60 = 1666.7 minutes (or 27.8 hours)

Predicting Program Times - Your Turn

Joe and Mary have created programs to analyze crime statistics, where
the input is some data on each resident of a town
 ● Joe's algorithm is quadratic time
 ● Mary's algorithm is linear time
 ● Both algorithms take about 1 minute for a town of size 1000

Both would like to sell their program to the City of Greensboro (population 275,000)

Problem: Estimate how long each program would take to run for Greensboro

Faster than linear list operations

Think about how you find a word in a dictionary:
 ● From the Webster's web site: "Webster's Third New International Dictionary, Unabridged, together with its 1993 Addenda Section, includes some 470,000 entries."
 ● If you checked every possible entry to see if it was the one you wanted, it would take way too long.
 ● How is a dictionary organized in order to make this easier?

Challenge: Describe precisely how to quickly look up a word.
Illustration for a list of students

Problem: Where’s Emeline? (Like “Where’s Waldo?” but without the goofy hat)

<table>
<thead>
<tr>
<th>Arturo</th>
<th>Chad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>Christian</td>
</tr>
<tr>
<td>Damion</td>
<td>Damion</td>
</tr>
<tr>
<td>Emeline</td>
<td>Emeline</td>
</tr>
<tr>
<td>Jaclyn</td>
<td>Jaclyn</td>
</tr>
<tr>
<td>Janica</td>
<td>Janica</td>
</tr>
<tr>
<td>Johnny</td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td></td>
</tr>
<tr>
<td>Levy</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td></td>
</tr>
<tr>
<td>Michael</td>
<td></td>
</tr>
<tr>
<td>Patrick</td>
<td></td>
</tr>
<tr>
<td>Sean</td>
<td></td>
</tr>
<tr>
<td>Symone</td>
<td></td>
</tr>
</tbody>
</table>

Basic process:
- Look in the middle of the list
- If that’s not the item you’re looking for, you can rule out half of the list (smaller or larger)
- Repeat this until you find it or run out of items

How long does this take?

At beginning: Could be any of \(n \) items
After 1 step: Could be any of \(n/2 \) items
After 2 steps: Could be any of \(n/4 \) items
After 3 steps: Could be any of \(n/8 \) items
...
After \(k \) steps: Could be any of \(n/2^k \) items

To get to one item, need \(n/2^k \) - so \(k = \log_2 n \)

This is called logarithmic time, and gives very fast algorithms!

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log_2 n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
</tr>
</tbody>
</table>

So can find one item out of a billion in just 30 comparisons!!!

Something worse...

Problem: I have 60 items, each with a value, and want to find a subset with total value as close to some target \(T \) as possible.

(The Price is Right on steroids...)

Algorithm: List all possible subsets of items
Add up total value of each subset
Find which one is closest

Question: If I have \(n \) items, how many subsets of \(n \) items are there?

Answer: There are \(2^n \) subsets - this is exponential time (and very bad!)
Graphically comparing time complexities

Exponential
Quadratic
Linear
Logarithmic

1000 seconds (about 15 minutes), at 1 billion ops/second

Note the log-log scale on this graph.
Max size for exponential time is around 40.

Comparing with numbers

Different time complexities, by the numbers...

<table>
<thead>
<tr>
<th></th>
<th>Time in seconds at 1 billion ops/sec</th>
<th>Largest problem in 1 min at 1 billion ops/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=1,000</td>
<td>n=1,000,000</td>
</tr>
<tr>
<td>log₂ n</td>
<td>0.0000001</td>
<td>0.00000002</td>
</tr>
<tr>
<td>n</td>
<td>0.00001</td>
<td>0.001</td>
</tr>
<tr>
<td>n²</td>
<td>0.001</td>
<td>1000</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>10⁵²³</td>
<td>10⁵⁴⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

* Huge means a problem far larger than the number of atoms in the universe

There is a lot more to this than what we have covered - but this gives a pretty accurate picture of basic algorithm time complexity!

Summary

- Algorithm "time complexity" is in basic steps
- Common complexities, from fastest to slowest are logarithmic, linear, quadratic, and exponential
 - A simple loop with constant time operations repeated is linear time
 - A loop containing a linear time loop is quadratic
 - A loop halving the problem size every iteration is logarithmic time
 - A program considering all subsets is exponential time
- Speed depends on algorithm time complexity
 - Logarithmic time is fantastic
 - Linear time is very good
 - Quadratic time is OK
 - Exponential time is awful
- Given time complexity and one actual time, can estimate time for larger inputs