The Internet

Part 1: Local Area Network Communication

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Warning....

Networking is complex, with many subtle issues and details
We only barely scratch the surface of the concepts

Want to know more?

Relevant UNCG classes:
- CSC 567: Principles of Computer Networks
- CSC 568: Principles of Wireless Networks
- CSC 580: Cryptography and Security in Computing

Reminders

Two things due before class on Wednesday:
1. Homework 3: Hopefully you have done this already!
2. Written project proposals (one per team)

Both should be submitted in Blackboard before 10:00am

Blown to Bits, Chapter 5
- Reading reflection due Tuesday, Nov. 12 at 10:00am
- This one is different: On-line discussion - check the discussion forum!
In-class exercise: You are the network!

First step: Divide class into four parts, representing four "locations"

Petty Building
UNCG
Sullivan Science Building
CAP Building
Sanford Hall

Today we focus on communication within a building...
... a Local Area Network (LAN)

Next time: Communication between buildings and campuses

In-class exercise: The setup

Four groups, one per location. Each group has:
- One "switch"
- The rest are "hosts" (one is special, but we'll get to that later)
- Your info sheet gives all necessary info

Each host (we're pretending to be Ethernet):
- Has a hardware (MAC) address
- Is connected to a particular port on the switch

The switch:
- Has a "MAC table" that says which addresses are connected to which physical port
About Ethernet MAC Addresses

MAC = "Media Access Control"

Example MAC address: 00:1b:21:79:6b:52

Question 1: What do the numbers look like?
Question 2: How many bits in a MAC address?

Every network interface must have a unique address

How do manufacturers ensure addresses are unique?

00:1b:21 79:6b:52

Assigned to one manufacturer Manufacturer chooses

Manufacturer for given MAC prefix

First 24 bits of MAC address are assigned to a manufacturer

Several web sites will look up a MAC prefix and tell you the manufacturer

Example lookup using http://hwaddress.com/

Download PC Cleaner Plus
* PC Cleaner Plus is all you Need. Free Download Highly Recommended
PC Cleaner apexent.com

So MAC address in our previous example is from a network card manufactured by Intel.

MAC Addresses

Finding MAC address in Windows 7

"Physical Address" is MAC address
Sending a message on a LAN

Our example: Ethernet

For hosts connected locally, through a switch, send packet to MAC address

For in-class activity:
- The blank index cards that were handed out represent "packets"
- Some of you have a "First activity" note on your information sheet
- Example: Send message "Welcome to the Matrix" to MAC 00:1b:21:79:6b:52
- If you have such a message write the destination MAC (you can use just the last 2 digits) and message on the index card and hand to the "switch"
- The "switch" has a "MAC table" that says who has what MAC address - they should "deliver" the packet (index card)

Notes:
- Easy to get packet from one host to another, since switch knows MAC addresses of all connected hosts
- No structure to MAC addresses (randomly assigned)
- How does this scale? What if all of the (billions) host in the Internet had to send through a central switch to an unstructured address?

Internet Addresses

IP = "Internet Protocol"

IP addresses look like aaa.bbb.ccc.ddd

In-class activity sheets: Each person (except the switch!) has a line that says "Your IP address" (e.g., 152.13.136.12)

Each of the 4 numbers is in the range 0..255 (1 byte)

Question 1: How many bits are in an IP address?
Question 2: From the in-class activity network sheets, every group of students in the same "building" - compare IP addresses and find a pattern.

Internet Protocol

Answer/Information to Question 1

Size of IP addresses:
- 4 numbers, each one byte (8 bits)
- Therefore, addresses are 32 bits

Why important? Means at most 2^32 different IP addresses.
2^32 is about 4 billion - what happens when we run out of IP addresses???

Oops - we are out of IP addresses!

Important points:
- These addresses are "IPv4" (or IP version 4) addresses
- There is a new version "IPv6" (version 6) - addresses are 128 bits
128 bits gives over 10^38 addresses - we won't run out of these!

Notes:
- Easy to get packet from one host to another, since switch knows MAC addresses of all connected hosts
- No structure to MAC addresses (randomly assigned)
- How does this scale? What if all of the (billions) host in the Internet had to send through a central switch to an unstructured address?
Internet Protocol

Answer/Information to Question 2

IP addresses for in-class activity

- All in UNCG's Petty Building look like 152.13.136.???
- All in UNCG's Sullivan Science Building look like 152.13.145.???
- All in AppState's CAP Building look like 152.10.10.???
- All in AppState's Sanford Hall look like 152.10.22.???

So: All in the same building agree on the first three numbers
All on the same campus agree on the first two numbers
All in the same multi-campus network (NCREN here) agree on first number

Hierarchical addressing allows us to route messages between LANs

Note: The in-class activity example is somewhat simplified (buildings, campuses, etc.). In reality things don't always match up to specific numbers in the IP address, but the ideas are similar!

Local Delivery

IP to Ethernet mapping using ARP

ARP = "Address Resolution Protocol"

Example: 152.13.136.18 wants to send "hello" to 152.13.136.25

Important points

- Recognizes a "local connection" since only last number differs
- Problem: Local communication uses Ethernet MAC addresses

ARP Protocol:

Switch

MAC 00:1b:12:51:c3:ba
IP addr 152.13.136.18

MAC 03:2b:91:ac:52:9a
IP addr 152.13.136.21

MAC 00:1b:5a:31:14:a2
IP addr 152.13.136.25

Switch

MAC 00:33:9a:55:29:19
IP addr 152.13.136.33

MAC 00:1b:12:51:c3:ba
IP addr 152.13.136.18

MAC 03:2b:91:ac:52:9a
IP addr 152.13.136.21

MAC 00:33:9a:55:29:19
IP addr 152.13.136.33

MAC 00:1b:5a:31:14:a2
IP addr 152.13.136.25

Switch

MAC 00:33:9a:55:29:19
IP addr 152.13.136.33

MAC 00:1b:5a:31:14:a2
IP addr 152.13.136.25
Local Delivery
IP to Ethernet mapping using ARP

ARP = "Address Resolution Protocol"

Example:
152.13.136.18 wants to send "hello" to 152.13.136.25

Important points
● Recognizes a "local connection" since only last number differs
● Problem: Local communication uses Ethernet MAC addresses

ARP Protocol:

MAC 00:1b:12:51:c3:ba
IP addr 152.13.136.18

MAC 03:2b:91:ac:52:9a
IP addr 152.13.136.21

MAC 00:1b:5a:31:14:a2
IP addr 152.13.136.25

Switch

MAC 00:33:3a:55:29:19
IP addr 152.13.136.33

Summary

Concepts introduced in this class:
● Two kinds of addressing: Ethernet and IP
● Ethernet (MAC) addresses are 48 bits with a manufacturer prefix
● Local area network communication and switches
● Translating IP addresses to MAC addresses (ARP)

Next class:
● Scaling up to a global network - routing
● Host and domain names for ease of use
● Transport layer: TCP vs UDP
● Application layer protocols - http, smtp, imap, ...
● Some security issues (more later!)