Trusted Computing in Cloud Computing and Virtualization

CSC 495/680 Lecture
December 1 and 6, 2010

What is Cloud Computing

- First, a video to explain cloud computing and relation to virtualization:

 http://www.youtube.com/watch?v=XdBd14rjc0

- Things to note:
 - Sending data to a remote provider
 - Importance of virtualization and “run anywhere” goal

Areas for Security Concerns
From “Cloud Computing and Security – A Natural Match”, by the TCG

1. Data at rest. Encryption works great for stored data.
 - Paper talks about “self-encrypting drives” (i.e., hard drives that encrypt at the hardware level).
 - Is this sensible in the cloud?
 - Who are you protecting from?
 - Does the same person “own” all data on a drive?

2. Securing data in transit.
 - Confidential communication is easy (SSL/TLS)
 - Authentication is tricky (and the next point)

3. Authentication – some new challenges in the cloud!
 - Company “owns” authentication info – cloud run by someone else
 - Secure distributed authentication is needed!
 - TPM key management can provide stronger solutions than passwords
 - Communication between auth and resource: IF-MAP (Interface for Metadata Access Points)

4. Separation between customers – customers could be competitors!
 - Strongly depends on virtualization
 - TPM attestation can build trust in hypervisor / VM infrastructure
Areas for Security Concerns
From "Cloud Computing and Security – A Natural Match", by the TCG

5. Cloud legal and regulatory issues.
 - Outsourcing to 'best practice' security implementations helps in compliance
 - Provider practices policy can be backed up with hardware enforcement

Areas for Security Concerns
From "Cloud Computing and Security – A Natural Match", by the TCG

6. Incident Response
 - For automated response (limit damage), need real-time notification
 - IF-MAP works for that

sHype Architecture
From: "Virtualization and Hardware-Based Security" (Perez, Sailer, and van Doom)

- Hypervisor can enforce strong separation between virtualized containers.
- sHype is simple enough to enable sensible attestation

TPM Virtualization in sHype
From: "Virtualization and Hardware-Based Security" (Perez, Sailer, and van Doom)

- Big question: How can you "virtualize" a hardware device that gets security from being a HW device?!?!
- Answer: Simulate, but use attestation (and underlying HW) to ensure simulation is secure

sHype: Other Notes

- sHype is the basis of a complete solution: IBM Research’s "Trusted Virtual Data Center"
- TPM virtualization can actually use a more powerful cryptographic module (the PCIXCC) when it is available, and it might be worth the investment in a server environment
- Some talk about peripherals supporting secure virtualization in their design

Terra Architecture
From: "Terra: A Virtual Machine-Based Platform for Trusted Computing" (Garfinkel, Pfaff, Chow, Rosenthal, and Boneh)

- Terrapredates IBM work on sHype (2003 vs 2008)
 - Clearly influenced sHype
- One interesting point: “Closed box VM” vs “Open box VM”
Notes on Terra

- Designed in the TPM v1.1 days, so required full static root of trust / trusted boot up through Terra’s TVMM
 - Although could easily be adapted to DRTM
- Was proposed not long after details of Microsoft’s NGSCB were released
 - NGSCB relied on a single OS (not virtualization)
 - NGSCB had a single “open box” – everything else closed
- Paper describes several trusted apps
 - “Trusted Quake”
 - Trusted Access Points