Digital Signatures - Idea

Public key encryption idea

Anyone can do this (uses “Public” key)

Only person with decryption key can do this (“Private” key)

Digital Signatures - Idea

Digital signature idea

Anyone can do this (uses “Public” key)

Only person with signing key can do this (“Private” key)
Digital Signatures - How it Works

Signature scheme consists of three algorithms:
- **Generate keypair**: Given keylength (security param) gives (PU, PR)
- **Sign**: Takes message M and PR, and produces signature sig
- **Verify**: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!
- So don’t run entire (possibly long) message through functions
- First hash, then sign \(H(M) \)

Is this combination secure? Yes! Why: Assume adversary knows valid
signs \((M_1, sig_1), (M_2, sig_2), \ldots, (M_n, sig_n)\) and can find a forgery \((M, sig)\).
- If \(H(M) = H(M_i)\) for some \(M_i\) → found a collision in \(H\), should be impossible!
- If \(H(M) \neq H(M_i)\) for all \(M_i\) → then \((H(M), sig)\) is a forger for sig scheme

Digital Signatures - Security Model

```
A(\(PU\))
// Arbitrary precomputation
while (not done):
  m = // compute query message
  s = \(g^m\) mod \(p\)
  Known = Known ∪ (m,s)
  // More computing
  \((n', s') = // compute claimed forgery
  Return \((n', s')\)
```

Adversary wins if there is no pair \((n', s')\) in Known and Verify\((n', s')\) = true

Note:
- Adversary picks oracle query messages, and can adapt as it learns
 o That makes this an ‘adaptive chosen message’ attack
- Any valid signature wins - only restriction is that \(m\) hasn’t been queried
 o That makes this an ‘existential forgery attack’

Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

ElGamal

As in Diffie-Hellman, let \(p\) be a prime and \(g\) be a primitive root

Key Generation
1. Pick random \(PR \in \{2,..., p-1\}\)
2. Compute \(PU = g^{PR}\) mod \(p\)
3. Private (signing) key is \(PR\); Public (verification) key is \(PU\)

Signing a message \(M\)
1. Pick random \(k \in \{2,..., p-1\}\) that is relative prime to \((p-1)\)
2. Compute \(r = g^k\) mod \(p\)
3. Compute \(k^{-1}\) mod \((p-1)\)
4. Compute \(s = k^{-1}\) \((H(M) - PR*r)\) mod \((p-1)\)
5. Signature is the pair \((r,s)\)

Verifying a signature \((r,s)\) on message \(M\):
1. Check if \(g^s = PU^r * r^{-(mod\ p)}\) [accept if true, reject if false]
ElGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation
1. Pick random $PR \in \{2, \ldots, p-1\}$
2. Compute $PU = g^{PR} \mod p$
3. Private (signing) key is PR; Public (verification) key is PU

Signing a message M
1. Pick random $k \in \{2, \ldots, p-1\}$ that is relative prime to $(p-1)$
2. Compute $r = g^k \mod p$
3. Compute $k^{-1} \mod (p-1)$
4. Compute $s = k^{-1}(H(M) - PRr) \mod (p-1)$
5. Signature is the pair (r,s)

Verifying a signature (r,s) on message M:
1. Check if $g^{sH(M)} = PU^r r^s \mod p$ [accept if true, reject if false]

Why does this work for valid sigs?

Important math fact: If $x \equiv y \pmod{p-1}$ then $a^x \equiv a^y \pmod{p}$.

Proof: If $x \equiv y \pmod{p-1}$ then there exists a k such that $x-y = k(p-1)$, so $x = k(p-1)+y$. Then $a^x = a^{k(p-1)}a^y = (a^{p-1})^ka^y$. By Fermat's Little Theorem, we know that $a^{p-1} \equiv 1 \pmod{p}$, so $(a^{p-1})^ka^y \equiv a^y \pmod{p}$. Therefore $a^x \equiv a^y \pmod{p}$.

What this means: To simplify $a^{\text{powerings and inverse}}$, don't depend on M; precompute

Applying this to ElGamal formulas:

$$PU = g^k \mod p$$

$$s = k^{-1}(H(M) - PRr) \mod (p-1)$$

Consider $PU^r r^s \equiv g^{sH(M)} \pmod{p}$, and simplify exponent $\pmod{(p-1)}$:

$$PR^r + k^s \equiv PR^r + k^x \equiv (H(M) - PRr) \mod (p-1)$$

Therefore, $PU^r r^s \equiv g^{sH(M)} \pmod{p}$

DSA - Digital Signature Algorithm

Compared to ElGamal

ElGamal

Let $q | p-1$

Key Generation
1. Pick random $PR \in \{2, \ldots, q\}$
2. Compute $PU = g^{PR} \mod p$
3. Private key is PR; Public key is PU

Signing a message M
1. Pick rand $k \in \{2, \ldots, q\}$
2. Compute $r = g^k \mod p$
3. Compute $k^{-1} \mod q$
4. Compute $s = k^{-1}(H(M) + PRr) \mod q$
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Check if $g^{sH(M)} = PU^r r^s \mod p$ [accept if true, reject if false]

DSA

q is prime such that $q | p-1$, and let g be a value with order q [$g^q \equiv 1 \pmod{q}$]

Key Generation
1. Pick random $PR \in \{2, \ldots, q\}$
2. Compute $PU = g^{PR} \mod p$
3. Private key is PR; Public key is PU

Signing a message M
1. Pick rand $k \in \{2, \ldots, q\}$
2. Compute $r = g^k \mod p$
3. Compute $k^{-1} \mod q$
4. Compute $s = k^{-1}(H(M) + PRr) \mod q$
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Compute $w = s^{-1} \mod q$
2. Check if $r \equiv (PU^w - g^{sH(M) \mod p} \mod q$
DSA - The Digital Signature Algorithm
History, Parameters, etc.

One component of NIST's Digital Signature Standard (DSS)

- DSS was adopted in 1993
- DSA dates back to 1991
- One goal: Only support integrity - not confidentiality
 - Why? Export restrictions!
 - Alternative signature scheme: RSA - also an encryption algorithm

Key and Parameter Sizes:

- ElGamal is similar to Diffie-Hellman modulus size (N = number of bits)
 - 1024-bit p was OK in 1990s - now suggest 2048-bit or 3072-bit
 - Signature two N-bit values (e.g., two 1024-bit values)

- DSA uses a computationally-hard subgroup
 - In 1990's q was 160 bits (matching SHA1!)
 - Signature was then two 160-bit values (more compact than ElGamal)
 - Now suggest q being 256 bits

Reminder - RSA Algorithm
From Public Key Encryption chapter

Key Generation:
- Pick two large primes p and q
- Calculate $n = p \cdot q$ and $\phi(n) = (p-1)(q-1)$
- Pick a random e such that $\gcd(e, \phi(n))$ = 1
- Compute $d = e^{-1} \pmod{\phi(n)}$ [Use extended GCD algorithm]
- Public key is $PU = (n, e)$; Private key is $PR = (n, d)$

Encryption of message $M \in \{0, \ldots, n-1\}$:
- $E(PU, M) = M^e \pmod{n}$

Decryption of ciphertext $C \in \{0, \ldots, n-1\}$:
- $D(PR, C) = C^d \pmod{n}$

Correctness - easy when $\gcd(M, n) = 1$:
- $D(PR, E(PU, M)) = (M^e)^d \pmod{n} = M \pmod{n}$

Also works when $\gcd(M, n) \neq 1$, but slightly harder to show...

RSA Algorithm for Signatures
“Textbook algorithm” - not how it’s really done

Key Generation:
- Pick two large primes p and q
- Calculate $n = p \cdot q$ and $\phi(n) = (p-1)(q-1)$
- Pick a random v such that $\gcd(v, \phi(n))$ = 1
- Compute $s = v^{-1} \pmod{\phi(n)}$ [Use extended GCD algorithm]
- Public key is $PU = (n, v)$; Private key is $PR = (n, s)$

Signing message $M \in \{0, \ldots, n-1\}$:
- $Sign(PR, M) = M^s \pmod{n}$

Verification of signature $\sigma \in \{0, \ldots, n-1\}$:
- $Verify(PU, M, \sigma)$: Check if $M = \sigma^v \pmod{n}$
RSA-PSS (Probabilistic Signature Scheme)
How it's really done - with padding (similar to OAEP for encryption)

Invented (and proved secure) by Bellare and Rogaway
- Also inventors of OAEP and HMAC

Forging sigs w/ "textbook RSA"
- Pick random sig R
- Let message $M = R^v \mod N$
- (M,R) is valid sig pair!

Modifying sigs ("blinding")
- Given $\sigma = M^s \mod N$
- Compute $X = R^v \mod N$
- Let $M' = X^s M \mod N$
- Let $\sigma' = R \cdot \sigma \mod N$
- Note $(\sigma')^v = R^{(v+1)} = X^s M \equiv M' \pmod{N}$

Figure 13.6 RSA-PSS Encoding