Overview

Today:
- HW3 solution review
- Brief project phase 1 discussion (more on Thurs)
- Overview of the Java Cryptography Architecture
- AES (from handout)

To do before Tuesday:
- Study for HW3 quiz
- Start reading Chapter 7

Reminder: DES and AES for CSC 580

We will focus on how to use block ciphers securely.

Important to understand big picture issues:
- What parameters describe block ciphers?
- What properties does a good block cipher have?
- How do parameters affect those properties?
- How did parameters change historically as capabilities grew?

How block ciphers work (internals):
- We will view as a "black box" with certain I/O behavior
- Internals are interesting, but avoided here to save time
What’s Wrong with DES?

Recall from last time:
- Can brute force a 56-bit key in a matter of days now
- Not designed for software
 - Can repeat use to increase security, but inefficient

Not discussed before: Block size
- “Collision attacks” follow “birthday problem” probabilities
 - With just 23 people, 50% chance that two have the same birthday
 - Roughly square-root of “universe size” (sqrt(365) = 19.1…)
- Applies to some applications of block ciphers
 - “universe” is number of possible ciphertext outputs
 - sqrt(2^{128}) = 2^{64} - requirement for both time and space (memory)
 - Trivial by today’s standards

Bottom line: Key is too small, block size is too small, and too inefficient...

Key Size

Is 128 bits enough?

2004 Estimate: $100k machine breaks 56-bit DES key in 6 hours

What about a 128-bit key?
- $100k machine takes >10^{18} years [the earth is <10^{10} years old]
- What if we spent $100,000,000,000?
 - Would take >10^{15} years

What about Moore’s law saying that in 20 years machines will be about
- 16,000 times faster?
 - Would take >10^{9} years
- OK, what about in 40 years (machines 100 million times faster)?
 - Would still take >30,000 years

Do you really think Moore’s law will last this long?

Block Size

Is 128 bits enough?

Birthday attack:
- Requires sqrt(2^{128}) = 2^{64} time and space
- Space is 2^{64} 128-bit entries, for a total of 16*2^{64} = 2^{68} bytes
- One terabyte is 2^{35} bytes → requires 256 million terabytes
- At $35/TB that would cost around $9 billion (plus power, …)

Seems pretty safe…
AES Selection Process

1993-1995: Clipper Chip fiasco
1997: Request for proposals for new standard block cipher
 ● Must use 128-bit block
 ● Must support 128-bit, 192-bit, and 256-bit keys
 ● Selection process through open evaluation
1999: 15 good submissions narrowed to 5 finalists
2000: Winner selected
 ● Winner was an algorithm named Rijndael (limited to 128-bit blocks)
 ● Invented/submitted by Vincent Rijmen and Joan Daemen (Belgians)

Important points:
 ● Very open, public process
 ● No secret modifications
 ● Not rushed

More trust!

AES - Some Final Points

In 20 years, no practical cryptanalytic attacks discovered

Approved for protecting classified information
 ● 128 bit keys for SECRET
 ● 192 or 256 bit keys for TOP SECRET
 ● Note: implementation must be approved

Efficiency
 ● Works on byte/word units: Efficient in software!
 ● Widespread standard → special fast CPU instructions now
 ○ Intel AES-NI instructions: over 10 gigabits/sec on a single core!
 ○ OpenSSL demo...
 ● Still simple enough for special-purpose hardware
 ○ 30+ Gbps possible