Overview

Today: Math basics (Sections 2.1-2.3)

To do before Tuesday:
- Complete HW1 problems
- Read Sections 3.1, 3.2 (can skip Hill Cipher), and 3.5

Longer term:
- Talk to classmates about teams for research project

The Big Picture...

Messages are typically strings of symbols from a finite alphabet
- Strings from the set of 26 letters ("classical cryptography")
- Strings of bytes (256 possible values for each byte)
- Strings of larger blocks (e.g., 128-bit blocks for AES)

Problem: Doing arithmetic with values takes you out of the allowed range
- Caesar cipher adds 3 to each letter: $24 + 3 = 27 \rightarrow$ oops - not a valid letter!

Solution:
- View infinite number line in "pieces" of appropriate size
- All pieces give different representatives of same alphabet
- So above, $27 + 26 + 1$ is treated the same as 1

Modular arithmetic - more useful than just "working with a finite alphabet"

You have all seen this before: Do you remember where?
Some Basic Ideas and Definitions

Divisibility, multiples, divisors, ...

Terminology: For integers a, b, and m, if a=m*b then
- a is a **multiple** of b
- b divides a (written b | a)
- b is a **divisor** of a
- b is a **factor** of a

Every integer has a set of positive divisors (incl. at least 1)
- Example 1: Divisors of 15 are 1,3,5,15
- Example 2: Divisors of 18 are 1, 2, 3, 6, 9, 18
- Often interested in greatest common divisor (gcd(15,18)=3)

Modular Arithmetic
Definitions and some basic properties

For any a and b, there is a unique r such that
\[a = q \times b + r, \text{ where } 0 \leq r < b \] (and q = \lceil a/b \rceil)
- q is the **quotient**
- r is the **remainder**

Two related notions:
- mod as a binary operator
 - a mod b is the remainder of a divided by b
 - 7 mod 5 = 2 ; 24 mod 7 = 3 ; 27 mod 9 = 0
- mod as a congruence relation
 - a \equiv b (mod n) if and only if \((a-b) | n\)
 - 7 \equiv 12 (mod 5) ; 24 \equiv 3 (mod 7) ; 128 \equiv 428 (mod 100)

Warning: Best to always work with non-negative numbers with mod. Some languages (like C) say mod definition on negative numbers is "implementation dependent" (with certain restrictions - but it's unpredictable).
Greatest Common Divisor
A very important algorithm!

Numbers a and b are relatively prime if \(\gcd(a,b) = 1 \)

How to compute \(\gcd \) fast?

Euclid’s Algorithm
Assuming \(a > b \):

\[
\gcd(a,b) : \\
\text{if } (b \mid a) \text{ then return } b \\
\text{else return } \gcd(b, (a \mod b))
\]

Running time: \(O(\log b) \)

<table>
<thead>
<tr>
<th>Example: (\gcd(522,64))</th>
<th>a</th>
<th>b</th>
<th>(a mod b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>522</td>
<td>64</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a mod b = 0 means b | a; so done
Final answer \(\gcd(522,64) = 2 \)

You try one:

Compute \(\gcd(77,64) \)

Modular Arithmetic
A very important property

If you want the result of an algebraic formula modulo \(n \), it doesn’t matter if you do the mod operation mid-computation or just at the end!

So \(((x*y + 321)*71 + z) \mod n = ((x*y) \mod n + 321)*71 + z) \mod n \)

Application: Keep all intermediate results small

Example: I want to compute \(1234^{100} \mod 10000 \)

- \(1234^{100} \) is 50 digits long → overflows 64-bit integer
- Note that \(1234^{100} = (((1234^2)^2)^2)^2 \)
- Can do \((((1234^2 \mod 10000)^2 \mod 10000)^2 \mod 10000)^2 \mod 10000 \)
- No intermediate result can be larger than \(9999^2 = 99,980,001 \) (8 digits)
Modular Arithmetic

Other properties of modular addition

The “mod 7” addition table (notice how easy to do in Python!)

```python
>>> np.asmatrix([[i+j for j in range(7)] for i in range(7)])
matrix([[0, 1, 2, 3, 4, 5, 6],
        [1, 2, 3, 4, 5, 6, 0],
        [2, 3, 4, 5, 6, 0, 1],
        [3, 4, 5, 6, 0, 1, 2],
        [4, 5, 6, 0, 1, 2, 3],
        [5, 6, 0, 1, 2, 3, 4],
        [6, 0, 1, 2, 3, 4, 5]])
```

Properties
- 0 is the “identity” (for every x, 0 + x mod 7 = x)
- Each row/column contains all values, shifted by an appropriate amount
 - Each row/column includes a 0 → each element has an additive inverse
- Not obvious from table, but operation is associative and commutative

 Note: These properties hold for any modulus, not just 7

Next: Try a few more moduli in Python… What’s the pattern for rows with 1’s?

Modular Arithmetic

Other properties of modular multiplication

The “mod 7” multiplication table

```python
>>> np.asmatrix([[i*j for j in range(7)] for i in range(7)])
matrix([[0, 0, 0, 0, 0, 0, 0],
        [0, 1, 2, 3, 4, 5, 6],
        [0, 2, 4, 6, 0, 2, 4],
        [0, 3, 6, 2, 5, 1, 4],
        [0, 4, 0, 4, 0, 4, 0],
        [0, 5, 2, 7, 4, 1, 6],
        [0, 6, 4, 2, 0, 6, 4]])
```

Properties of the “mod 7” multiplication table - for all elements except 0:
- 1 is the “identity” (for every x, 1 * x mod 7 = x)
- Each row/column contains all values, permuted
 - Each row/column includes a 1 → each element has a multiplicative inverse
- Not obvious from table, but operation is associative and commutative

Do these properties hold for any modulus?

Modular Arithmetic

Other properties of modular multiplication

The “mod 8” multiplication table

```python
>>> np.asmatrix([[i*j for j in range(8)] for i in range(8)])
matrix([[0, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 2, 3, 4, 5, 6, 7],
        [0, 2, 4, 6, 0, 2, 4, 6],
        [0, 3, 6, 1, 4, 7, 2, 5],
        [0, 4, 0, 4, 0, 4, 0, 4],
        [0, 5, 2, 7, 4, 1, 6, 3],
        [0, 6, 4, 2, 0, 6, 4, 2],
        [0, 7, 6, 5, 4, 3, 2, 1]])
```

Row doesn’t contain a 1!

Next: Try a few more moduli in Python… What’s the pattern for rows with 1’s?
Modular Arithmetic

Other properties of modular multiplication

The "mod 8" multiplication table

```python
>>> np.asarray([[i*j % 8 for j in range(8)] for i in range(8)])
matrix([[0, 0, 0, 0, 0, 0, 0, 0],
        [0, 1, 2, 3, 4, 5, 6, 7],
        [0, 2, 4, 6, 0, 2, 4, 6],
        [0, 3, 6, 1, 4, 7, 2, 5],
        [0, 4, 0, 4, 0, 4, 0, 4],
        [0, 5, 2, 7, 4, 1, 6, 3],
        [0, 6, 4, 2, 0, 6, 4, 2],
        [0, 7, 6, 5, 4, 3, 2, 1]])
```

Row doesn't contain a 1!

Next: Try a few more moduli in Python... What's the pattern for rows with 1's?

Answer: Row x has a 1 (i.e., x has a mult inverse) if and only if x is relatively prime to the modulus.

Important fact: Can use the "Extended Euclidean" algorithm to find x's inverse mod n in O(log n) time. (details in book)

Number Sizes

Estimating with powers of two

Important values to know cold:

- 2^{10} is "about 1000" (actually 1024)
- 2^{20} is "about a million" (actually 1,048,576)
- 2^{30} is "about a billion"
- 2^{40} is "about a trillion"
- ...

And the converse for dealing with base 2 logarithms:

- $\log_2(1000)$ is about 10
- $\log_2(1,000,000)$ is about 20
- $\log_2(1,000,000,000)$ is about 30
- ...

Number Sizes

Using for quick estimates - crypto example

Consider a "key cracking" machine that is clocked at 1 GHz, so can test 1 billion keys per second.

Attacking a cipher with 40-bit keys.

Question: How long to test all possible keys?

1. A billion keys/second is about 2^{30} keys/second
2. There are 2^{40} different 40-bit keys
3. Time required is then $2^{40} / 2^{30} = 2^{10}$ seconds
4. 2^{10} seconds is about 1,000 seconds
5. An hour has 3,600 seconds, so this is just a little over 15 minutes (not a very secure cipher!)
Number Sizes
More precise estimates

Know powers of 2 up to 2^{10} - a few important ones:

- $2^4 = 16$
- $2^6 = 32$
- $2^9 = 256$

Examples:

- What is 2^{25}? $2^{20} \cdot 2^5 = \text{approx 32 million}$
- What is 2^{38}? $2^{30} \cdot 2^8 = \text{approx 256 billion}$

Relation to a few other measures:

- One hour is 3,600 seconds, which is approx 2^{12}
- One day is 86,400, which is approx 2^{16} (closer: $2^{16.4}$)
- One year is approx 2^{25} seconds

So 8 trillion cycles on a 1GHz machine takes:

$2^{43} / 2^{30} = 2^{13}$ seconds \rightarrow about 2 hours

Number Sizes
Algorithm understanding example

Need the multiplicative inverse of a number with 55-bit modulus

"Counting down" algorithm:

- For modulus n takes time $\Theta(n)$ time
- $n = 2^{55} \rightarrow 2^{55}$ computational steps
- At a billion steps / second $\rightarrow 2^{55}/2^{30} = 2^{25}$ seconds (1 year)

Euclid's algorithm:

- For modulus n, takes time $O(\log n)$ (specifically, $< 2^{\log_2(n)}$ steps)
- n is $2^{55} \rightarrow$ less than $2^{55} = 110$ steps
- At a billion steps / second \rightarrow Less than a millionth of a second

Your turn!

DES (which we’ll look at next week) uses a 56-bit key. In 1998 a machine (“Deep Crack”) was built that could test 90 billion keys per second.

How long does it take to test all keys? (Hint: round values sensibly!)
Number Sizes

Moore’s Law

Moore’s Law states that computing power doubles approximately every 18 months (1.5 years).

Example use:
9 years from now, we will have had 6 “doublings”, so computing power will be $2^6 = 64$ times faster than today.

Can this continue indefinitely?
No.

Are we near the end of Moore’s Law?
Opinions vary....

Your turn #2! Moore’s Law and flipped around

A reasonable “clock speed” today is around 2-4 GHz, so assume that is the lower bound for a single core to test a key (really takes longer).

Custom hardware can give you a speed boost of, say, a million times.

Question: Assuming Moore’s Law continues, how many bits should a key have to be safe for the next 30 years? What if you wanted an extra “cushion” of a factor of 1000?

Number Sizes

Some really big numbers (impress your friends!)

Handout: “Large Numbers” from Applied Cryptography (Schneier)

Fun with large numbers....

- Randomly guessing a DES key: Probability of getting the correct key is half the probability of “winning the top prize in a U.S. state lottery and being killed by lightning in the same day.”
- Time to go through all 128-bit values at 1 trillion/second
 $2^{128} / 2^{40} = 2^88$ seconds (or $2^{88}/2^{25} = 2^{63}$ years ... or $2^{23}/2^{30} = 2^{23}$ or 8 million times the “time until the sun goes nova”)
- Factoring 1024-bit numbers (for breaking a small RSA key)
 Idea: Can we make a table of all prime factorizations?
 2^{1024} entries in the table. 2^{265} atoms in the universe. So not even remotely within the realm of possibility.
Number Sizes
Some really big numbers (impress your friends!)

A final thing to think about:

Finding a multiplicative inverse with a 2048-bit modulus is a very common operation in cryptography.

If we didn’t know Euclid’s algorithm, how long would the “counting down” algorithm take?