Goal: Encrypt a Block Storage Device

Block storage devices
- Used for “bulk storage”
- Hard drives, solid-state drives, thumb drives, …
- Devices often portable and can’t be physically protected

What encryption is out there?

Software FDE (Full Disk Encryption)

VeraCrypt is a successor to TrueCrypt
TrueCrypt was used for years as a cross-platform disk encryption tool - development discontinued in 2014 (interesting story…)
Microsoft FDE for Windows

BitLocker combines software FDE with hardware key protection
- Uses the Trusted Platform Module (TPM)
- Can be tightly integrated with UEFI Secure Boot
- Can also require a USB drive as a key
- Can encrypt USB drives...

Disk Encryption in the Disk Itself

Properties of Block Storage

Data in fixed-size blocks/sectors
- Only full blocks can be read/written
- Data structures optimized for layout
 - Filesystems
 - B-trees (databases)

Some desirable properties (more in textbook)
- Data size must remain the same (think about CBC)
- Data layout must remain the same (blocks map to blocks)
- Same data in different locations has different ciphertext
- Vital for this to be fast!
Tweakable Block Ciphers

Tweakable Encryption: \(E(K, T, P) = C \)

Goal: “Tweak” adds variability without IV or CT length increase

Efficiency goal: More efficient than changing key
- Remember: Can precompute key schedule

Attempt 1:
- CTR mode with \(T \) as CTR?
- Bad: Malleable

Attempt 2:
- XOR plaintext blocks with counter
- Good: Mixes up ciphertext
- Bad: What if plaintext blocks are counters?

Attempt 3:
- XOR before and after with “random looking” data
- Good: Unlikely to accidentally have bad patterns
- Bad: Can an attacker create bad patterns?
 - Is this a danger? Unclear...

One that works: **XTS-AES**

Idea: Encrypt sector number for unpredictable plaintext adjustment.

Efficiency:
- Circled part is the same for all blocks in sector - compute once!
- Block adjustments (\(\alpha \)) doesn’t depend on \(i \) - precompute!
- Combination (\(\otimes \)) sped up in AES-NI instructions

\(i \): Sector number
\(j \): Cipher block number within sector

Key is really two keys...
Test your understanding...

How many block cipher encryptions are needed to encrypt a 512-byte sector?

Programming with Crypto

Discussion on board and looking at JCA documentation:

Using block cipher modes

- Handling the IV
 - Importance of randomness
 - Sending with the ciphertext
 - Extracting and using to decrypt

- Binary, text, and Base64