1. Determine whether the equation $y = x^2 - 2x$ defines y as a function of x.
 Yes No

2. Find the domain of the function $f(x) = \sqrt{x+4}$.

3. Let $g(x) = 2x - 3$. What is the range of g?

4. Is the point $(3,6)$ on the graph of $f(x) = \frac{2x}{x-2}$?

5. Sketch a graph of an equation that is NOT the graph of a function. Briefly explain why it is not the graph of a function.
Solutions

1. Yes. Notice that for each value for x, there is exactly one corresponding y-value.

2. Recall that the domain is the set of allowable input values to the function. The square root can handle anything greater than or equal to zero, so we need

 \[x + 4 \geq 0 \]
 \[x \geq -4. \]

 In other words,

 \[\text{dom}(f) = \{x \in \mathbb{R} \mid x \geq 4\} = [-4, \infty). \]

 [Note that -4 is an allowable input, so we have the square bracket on the -4 side.]

3. Recall that the range is the set of output values. The graph of g is a line (not horizontal), so it follows that the range is all real numbers. In other words, the range is $(-\infty, \infty)$.

4. To check if the point $(3,6)$ is on the graph of f, we plug in to the equation $y = f(x)$ and see if we get a true statement. In other words, we compute $f(3)$ and check if it is 6.

 \[
 f(3) = \frac{2 \cdot 3}{3 - 2} = \frac{6}{1} = 6.
 \]

 It follows that the point $(3,6)$ is on the graph if f.

5. The graph shown below is not the graph of a function because it fails the Vertical Line Test. In other words, there are certain values for x for which there is more than one corresponding height for the curve. In the example I have drawn below, when $x = 1$, we have $y = 1$ and $y = -1$.