1. (2 points) Compute \(\lim_{t \to 0} \frac{\sin(7t)}{t} \).

Solution: Recall that we proved in class that \(\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1 \). To compute the given limit, multiply the numerator and denominator by 7. Then let \(\theta = 7t \). Then as \(x \to 0 \), we have \(\theta \to 0 \).

\[
\lim_{t \to 0} \frac{\sin(7t)}{t} = \lim_{t \to 0} \frac{7 \sin(7t)}{7t} = 7 \lim_{t \to 0} \frac{\sin(7t)}{7t} = 7 \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 7 \cdot 1 = 7.
\]

2. (3 points) (Definition) A function \(f \) is **continuous** at an interior point \(c \) of its domain if

Solution:

\[
\lim_{x \to c} f(x) = f(c).
\]

3. (5 points) Complete the statement of the **Intermediate Value Theorem**.

Let \(f \) be a function on the interval \([a, b]\). Let \(y_0 \) be any value between \(f(a) \) and \(f(b) \). Then there exists a \(c \) between \(a \) and \(b \) such that \(f(c) = y_0 \).

Solution: Let \(f \) be a **continuous** function on the interval \([a, b]\). Let \(y_0 \) be any value between \(f(a) \) and \(f(b) \). Then there exists a \(c \) between \(a \) and \(b \) such that \(f(c) = y_0 \).