1. (6 points) The curve \(y = f(x) \) is graphed below. On the same set of axes, sketch the derivative \(y = f'(x) \). Be sure to mark open circles at points where the derivative is undefined.

\[
\begin{array}{c c}
\text{Solution:} & \text{The derivative is graphed above in red.}
\end{array}
\]

2. (4 points) Answer each question by circling True if it must be true and False if it is ever false. No justification is required.

- True | False: If \(u \) and \(v \) are differentiable functions, then
 \[
 \frac{d}{dx} (uv) = \frac{du}{dx} \frac{dv}{dx}.
 \]

- True | False: If \(u \) and \(v \) are differentiable functions, then
 \[
 \frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}.
 \]

- True | False: If \(n \) is any real number, then
 \[
 \frac{d}{dx} (x^n) = nx^{n-1},
 \]
 for all \(x \) where the powers \(x^n \) and \(x^{n-1} \) are defined.

- True | False: The derivative of the exponential function is
 \[
 \frac{d}{dx} (e^x) = xe^{x-1}.
 \]