HOMEWORK 1

DAN YASAKI

1. Read Gunnells Modular forms TWIGS.
 http://www.math.umass.edu/~gunnells/talks/modforms.pdf
2. Read Chapter 1 of textbook.
3. §1.6 (1.1) Note that this shows the action of $GL_2(\mathbb{R})$ preserves the complex upper halfplane.
 Solution: Let $z = x + iy \in \mathbb{C}$ with $y > 0$, and let $a, b, c, d \in \mathbb{R}$ with $ad - bc > 0$. We want to show that
 $$\text{Im} \left(\frac{az + b}{cz + d} \right) > 0.$$
 Multiply the numerator and denominator by $cz + d = c\bar{z} + d$ to get
 $$\left(\frac{az + b}{cz + d} \right) = \left(\frac{az + b}{cz + d} \right) \left(\frac{c\bar{z} + d}{c\bar{z} + d} \right) = \frac{ac|z|^2 + bcz + adz + bd}{|cz + d|^2} = \frac{ac|z|^2 + bcx - bciy + adx + adiy + bd}{|cz + d|^2}.$$
 The imaginary part is $\frac{(ad - bc)y}{|cz + d|^2}$, which is greater than 0 as desired.
4. §1.6 (1.3)
 Solution: Recall a weakly modular function is a meromorphic function such that for all $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma,$
 $$f(\gamma \cdot z) = (cz + d)^k f(z).$$
 (a) Suppose f and g are weakly modular functions of weight k_1 and k_2, respectively. We want to show the product $h = fg$ is a weakly modular function. The product of meromorphic functions is meromorphic, so it suffices to show that h satisfies the correct equivariance properties. We compute
 $$h(\gamma \cdot z) = f(\gamma \cdot z)g(\gamma \cdot z) = (cz + d)^{k_1} f(z)(cz + d)^{k_2} g(z) = (cz + d)^{k_1 + k_2} f(z)g(z) = (cz + d)^{k_1 + k_2} h(z).$$
 (b) Suppose f is a weakly modular function of weight k. We want to show that $1/f$ is a weakly modular function. The reciprocal of a meromorphic function is meromorphic, so it suffices to show that $h = 1/f$ satisfies the correct equivariance
properties. We compute
\[
h(\gamma \cdot z) = \frac{1}{f(\gamma \cdot z)}
= \frac{1}{(cz + d)kf(z)}
= (cz + d)^{-k} \frac{1}{f(z)}
= (cz + d)^{-k} h(z).
\]

(c) Suppose \(f \) and \(g \) are modular functions. We want to show that \(fg \) is a modular function. Recall that a modular function is a weakly modular function that is meromorphic at infinity. Above we show that the product of weakly modular functions is weakly modular, so it suffices to show that \(h = fg \) is meromorphic at infinity, assuming \(f \) and \(g \) are meromorphic at infinity. This can be shown by multiplying the respective \(q \) expansions. Specifically, let
\[
f(z) = \sum_{n \geq m_1} a_n q^n \quad \text{and} \quad g(z) = \sum_{n \geq m_2} b_n q^n.
\]
Then the \(q \)-expansion of \(h \) is
\[
h(z) = \left(\sum_{n \geq m_1} a_n q^n \right) \left(\sum_{n \geq m_2} b_n q^n \right)
= a_{m_1} b_{m_2} q^{m_1 + m_2} + \cdots
\]
Since \(m_1 + m_2 \in \mathbb{Z} \), it follows that \(h \) is meromorphic at infinity.

(d) Suppose \(f \) and \(g \) are modular forms. We want to show that \(h = fg \) is a modular form. Recall that a modular form is a modular function that is holomorphic on \(\mathbb{H} \) and holomorphic at infinity. We show above that the product of modular functions is a modular function. The product of holomorphic functions is holomorphic. Thus it suffices to show that \(h \) is holomorphic at infinity assuming \(f \) and \(g \) are holomorphic at infinity. As above, we just look at the \(q \)-expansions. Specifically, let
\[
f(z) = \sum_{n \geq 0} a_n q^n \quad \text{and} \quad g(z) = \sum_{n \geq 0} b_n q^n.
\]
Then the \(q \)-expansion of \(h \) is
\[
h(z) = \left(\sum_{n \geq 0} a_n q^n \right) \left(\sum_{n \geq 0} b_n q^n \right)
= a_0 b_0 + (a_1 b_0 + a_0 b_1) q + \cdots
\]
Since \(m_1 + m_2 \in \mathbb{Z} \), it follows that \(h \) is meromorphic at infinity.

5. §1.6 (1.4)

Solution: Recall
\[
\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\}.
\]
(a) Let \(g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(h = \begin{bmatrix} q & r \\ s & t \end{bmatrix} \) be elements of \(\Gamma_1(N) \). Then
\[
a \equiv d \equiv q \equiv t \equiv 1 \pmod{N}
\]
and
\[
c \equiv s \equiv 0 \pmod{N}.
\]
It follows that
\[
g^{-1} = \begin{bmatrix} d & -b \\ -ca & -b \end{bmatrix} \in \Gamma_1(N).
\]
We compute
\[
gh = \begin{bmatrix} aq + bs & ar + bt \\ qc + ds & cr + dt \end{bmatrix}.
\]
Since \(c \equiv s \equiv 0 \pmod{N} \), we have \(qc + ds \equiv 0 \pmod{N} \). Since \(a \equiv q \equiv 1 \pmod{N} \) and \(s \equiv 0 \pmod{N} \), we have \(aq + bs \equiv 1 \pmod{N} \). Similarly, we have \(cr + dt \equiv 1 \pmod{N} \). Thus \(gh \in \Gamma_1(N) \), and \(\Gamma_1(N) \) is a subgroup of \(\text{SL}_2(\mathbb{Z}) \).

(b) We want to prove that \(\Gamma_1(N) \) has finite index in \(\text{SL}_2(\mathbb{Z}) \), where
\[
\Gamma(N) = \ker(\text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/NZ)).
\]
First note that \(\Gamma(N) \subset \Gamma_1(N) \). It follows that
\[
[\text{SL}_2(\mathbb{Z}) : \Gamma_1(N)] \leq [\text{SL}_2(\mathbb{Z}) : \Gamma(N)] \leq \# \text{SL}_2(\mathbb{Z}/NZ) < \infty.
\]
(c) We want to prove that \(\Gamma_0(N) \) has finite index in \(\text{SL}_2(\mathbb{Z}) \). This follows because \(\Gamma_1(N) \subset \Gamma_0(N) \), and we show above that \(\Gamma_1(N) \) has finite index in \(\text{SL}_2(\mathbb{Z}) \).
(d) We want to prove that \(\Gamma_0(N) \) and \(\Gamma_1(N) \) have level \(N \). Recall that the level of a congruence subgroup is the smallest positive integer \(n \) such that the congruence subgroup contains \(\Gamma(n) \). Let \(t < N \). Then \(g = \begin{bmatrix} 1 & 0 \\ t & 0 \end{bmatrix} \in \Gamma(t) \), and \(g \notin \Gamma_1(N) \) and \(g \notin \Gamma_0(N) \). It follows that the level of \(\Gamma_1(N) \) and the level of \(\Gamma_0(N) \) is greater than or equal to \(N \). It is clear that \(\Gamma(N) \subset \Gamma_0(N) \) and \(\Gamma(N) \subset \Gamma_0(N) \), and so the level is less than or equal to \(N \). It follows that the level is exactly \(N \).

6. §1.6 (1.7) Note that this shows that
\[
(f^{[\gamma]k})(z) = \det(\gamma)^{k-1}(cz + d)^{-k}f(\gamma(z))
\]
defines a right action of \(\text{GL}_2(\mathbb{R}) \) on the set of functions \(f : \mathbb{H}^* \to \mathbb{C} \).

Solution: For \(\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), let \(j \) be the automorphy factor \(j(\gamma, z) = (cz + d) \). Note that
\[
f^{[\gamma]k}(z) = \det(\gamma)^{k-1}j(\gamma, z)^{-k}f(\gamma \cdot z).
\]
We want to show that
\[
f^{[\gamma_1\gamma_2]k}(z) = (f^{[\gamma_1]k}j^{[\gamma_2]k})(z).
\]
The left side is
\[
\det(\gamma_1\gamma_2)^{k-1}j(\gamma_1\gamma_2, z)^{-k}f((\gamma_1\gamma_2) \cdot z)
\]
and the right side is
\[
\det(\gamma_2)^{k-1}\det(\gamma_1)^{k-1}j(\gamma_1, \gamma_2, z)^{-k}j(\gamma_2, z)^{-k}f((\gamma_1 \cdot (\gamma_2 \cdot z))).
\]
Thus it suffices to show that
(a) $(\gamma_1 \gamma_2) \cdot z = \gamma_1 \cdot (\gamma_2 \cdot z)$ and
(b) $j(\gamma_1 \gamma_2, z) = j(\gamma_1, \gamma_2 \cdot z) j(\gamma_2, z)$.

Consider the vector $\begin{bmatrix} z \\ 1 \end{bmatrix}$. Then one can relate the action of matrices on the upper half plane with the regular matrix multiplication on vectors by

$$\gamma \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} \gamma \cdot z \\ 1 \end{bmatrix} j(\gamma, z).$$

It follows that

(1) $$\begin{bmatrix} \gamma_1 \gamma_2 \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \gamma_1 \begin{bmatrix} \gamma_2 \cdot z \\ 1 \end{bmatrix} j(\gamma_2, z)$$

(2) $$= \begin{bmatrix} \gamma_1 \cdot (\gamma_2 \cdot z) \\ 1 \end{bmatrix} j(\gamma_1, \gamma_2 \cdot z) j(\gamma_2, z).$$

On the other hand,

(3) $$\begin{bmatrix} \gamma_1 \gamma_2 \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} (\gamma_1 \gamma_2) \cdot z \\ 1 \end{bmatrix} j(\gamma_1 \gamma_2, z).$$

Setting (2) equal to (3) gives the desired result.

Dan Yasaki, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA

E-mail address: d_yasaki@uncg.edu