Abstract. Notes and questions about perfect pairings. This arose in the context of a summer reading course from Stein’s [1].

Let \(R \) be field, and let \(M, N, \) and \(L \) be vector spaces over \(R \). (We will usually consider \(R = \mathbb{Q}, \mathbb{R}, \mathbb{C}, \) or \(\mathbb{F}_p \). Our vector spaces will usually be finite-dimensional.) Many of the things below are true even when \(R \) is a ring in the context of \(R \)-modules.

Exercise 1. \(\text{Hom}_R(M, R) \) is the space of linear functionals on \(M \). It is often denoted \(M^* \), and called the dual space of \(M \). More generally, let \(\text{Hom}_R(M, N) \) denote the set of \(R \)-linear maps from \(M \) to \(N \). Prove \(\text{Hom}_R(M, N) \) is a vector space. Assume that \(M \) and \(N \) are finite dimensional. Compute the dimension of \(\text{Hom}_R(M, N) \).

Definition 1. A \(R \)-bilinear map \(\langle \cdot, \cdot \rangle : M \times N \to L \) is called a pairing.

Exercise 2. A good example to keep in mind is the pairing between \(M^* \) and \(M \). Specifically, define \(\langle \cdot, \cdot \rangle : M^* \times M \to R \) by \(\langle f, m \rangle = f(m) \). Prove that this is in fact a pairing.

Exercise 3. Suppose \(\langle \cdot, \cdot \rangle : M \times N \to L \) is a pairing. We can view \(\langle \cdot, \cdot \rangle \) as a \(R \)-linear map \(\Phi_1 : M \to \text{Hom}_R(N, L) \). We can also view \(\langle \cdot, \cdot \rangle \) as a \(R \)-linear map \(\Phi_2 : N \to \text{Hom}_R(M, L) \). Explain. (Hint for \(\Phi_1 \): Given \(m \in M \), what is the most natural way to get a map from \(N \) to \(L \) using what is given?)

Definition 2. A pairing is non-degenerate if whenever \(\langle m, n \rangle = 0 \) for all \(n \in N \), then \(m = 0 \).

Exercise 4. Explain non-degeneracy in terms of \(\Phi_1 \) or \(\Phi_2 \).

Definition 3. A pairing is perfect if \(\Phi_1 \) is an isomorphism.

Exercise 5. If \(\langle \cdot, \cdot \rangle \) is a perfect pairing of finite-dimensional vectors spaces, is \(\Phi_2 \) is an isomorphism?

Exercise 7. Let \(\langle \cdot, \cdot \rangle \) be the usual inner product on \(\mathbb{R}^n \). Prove that \(\langle \cdot, \cdot \rangle \) is a non-degenerate, perfect pairing.

Exercise 8. For each pair of vectors \(u \) and \(v \) in \(\mathbb{R}^2 \), define \(\langle u, v \rangle \) to be the determinant of the matrix with columns \(u \) and \(v \). Prove \(\langle \cdot, \cdot \rangle \) is a pairing. Is it nondegenerate? Is it perfect?

Exercise 9. For each \(A \in \text{Mat}_n(R) \) and each \(v \in R^n \), define \(\langle A, v \rangle = Av \). Is this a pairing? Is it nondegenerate? Is it perfect?

Exercise 10. For each \(f, g \in C^\infty(\mathbb{R}) \), define

\[
\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx.
\]

Is this a pairing?
Exercise 11. For each $f \in C^\infty(\mathbb{R})$ and each closed interval $[a, b] \subset \mathbb{R}$, define

$$\langle f, [a, b] \rangle = \int_a^b f(x) \, dx.$$

Is this a pairing? Before answering that, think carefully about what you would need to show. What is M, N, and L in this case?

References