Congruence Subgroups of $\textrm{PSL}(2,\mathbb{Z})$
^ | Level 19 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
---|---|---|---|---|---|---|---|---|---|---|---|---|
19A^{14} | 285 | 1 | 285 | 5 | 6 | 19^{15} | 6^{1} 9^{1} 18^{15} | 19A^{2} | ||||
^ | Level 21 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
21A^{14} | 252 | 2 | 63 | 8 | 0 | 21^{12} | 6^{7} 12^{7} | 21B^{4} 21D^{5} 21C^{6} | ||||
^ | Level 25 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
25A^{14} | 250 | 1 | 250 | 10 | 1 | 25^{10} | 10^{1} 20^{12} | 5C^{0} | ||||
^ | Level 28 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
28A^{14} | 252 | 2 | 63 | 8 | 0 | 14^{6} 28^{6} | 6^{21} | 14G^{5} 28J^{6} 28C^{7} | ||||
28B^{14} | 252 | 2 | 63 | 8 | 0 | 14^{6} 28^{6} | 6^{21} | 28H^{5} 14A^{6} 28C^{7} | ||||
28C^{14} | 252 | 2 | 63 | 8 | 0 | 14^{6} 28^{6} | 6^{21} | 28C^{4} 14A^{6} 28I^{6} 28J^{6} | ||||
^ | Level 30 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
30A^{14} | 240 | 1 | 240 | 0 | 3 | 10^{6} 30^{6} | 4^{30} 8^{15} | 10J^{1} 30I^{5} | ||||
^ | Level 31 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
31A^{14} | 248 | 2 | 248 | 8 | 5 | 31^{8} | 6^{1} 10^{1} 30^{16} | 1A^{0} | ||||
^ | Level 32 | Name | Index | con | len | c_{2} | c_{3} | > | Cusps | Gal | Supergroups | Subgroups |
32A^{14} | 256 | 1 | 256 | 16 | 1 | 32^{8} | 16^{16} | 16G^{2} |
Part of a table of all congruence subgroups of Genus 14, which is included in a collection of tables of all congruence subgroups of $\textrm{PSL}(2,\mathbb{Z})$ of genus up to 24. The algorithm used to generate these tables is described in the article Congruence Subgroups of $\textrm{PSL}(2,\mathbb{Z})$ of Genus up to 24 by Chris Cummins and Sebastian Pauli.