Computation of unit groups and class groups I

Michael E. Pohst

Institut für Mathematik
Technische Universität Berlin

June 22, 2013
Units

Let F be an algebraic number field of degree $n = r_1 + 2r_2$. A **unit** of an order R of F is an invertible element ε of R. The group of units of R will be denoted by $U(R)$.

1. $\alpha \in R$ belongs to $U(R)$ precisely if $N(\alpha) \in U(\mathbb{Z}) = \{\pm 1\}$.
2. R contains only a finite number of non–associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called **associate** if α/β and β/α belong to R.)
3. For any constant $C > 0$ there exist only finitely many elements $\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.
Units

Let F be an algebraic number field of degree $n = r_1 + 2r_2$. A unit of an order R of F is an invertible element ε of R. The group of units of R will be denoted by $U(R)$.

1. $\alpha \in R$ belongs to $U(R)$ precisely if $N(\alpha) \in U(\mathbb{Z}) = \{\pm 1\}$.

2. R contains only a finite number of non–associate elements of bounded norm. (Elements $\alpha, \beta \in R$ are called associate if α/β and β/α belong to R.)

3. For any constant $C > 0$ there exist only finitely many elements $\alpha \in R$ such that the absolute values of all conjugates of α are bounded by C.
Roots of unity

An element $\xi \in R$ is a root of unity precisely if all conjugates of ξ have absolute value 1.

All roots of unity of R form a finite cyclic subgroup which we denote by $TU(R)$, in case of $R = o_F$ by TU_F.

A generator of the group $TU(R)$ of order w will be denoted by ζ (primitive w–th root of unity).

For imaginary quadratic extensions $F \ (2 = n = 2r_2)$ we have $U(R) = TU(R)$.
Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, \ldots, x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_1$, $x^{(j)} \in \mathbb{C} \setminus \mathbb{R}$ for $r_1 < j \leq n$ subject to $x^{(r_1+r_2+j)} = \bar{x}^{(r_1+j)}$ for $1 \leq j \leq r_2$.

Theorem (Dirichlet) The unit group $U(R)$ of R is a direct product of its torsion subgroup $TU(R)$ with $r = r_1 + r_2 - 1$ infinite cyclic groups:

$$U(R) = TU(R) \times \langle E_1 \rangle \cdots \times \langle E_r \rangle \cong C_w \mathbb{Z}^r.$$

The generators E_1, \ldots, E_r form a system of **fundamental units**.
Structure of the unit group

The conjugates of $x \in F$ are denoted by $x^{(1)}, \ldots, x^{(n)}$. They are ordered in the usual way such that $x^{(j)} \in \mathbb{R}$ for $1 \leq j \leq r_1$, $x^{(j)} \in \mathbb{C} \setminus \mathbb{R}$ for $r_1 < j \leq n$ subject to $x^{(r_1+r_2+j)} = x^{(r_1+j)}$ for $1 \leq j \leq r_2$.

Theorem (Dirichlet) The unit group $U(R)$ of R is a direct product of its torsion subgroup $TU(R)$ with $r = r_1 + r_2 - 1$ infinite cyclic groups:

$$U(R) = TU(R) \times \langle E_1 \rangle \cdots \times \langle E_r \rangle \cong C_w \mathbb{Z}^r .$$

The generators E_1, \ldots, E_r form a system of fundamental units.
Regulator

We consider the logarithmic map

$$L : F^\times \rightarrow \mathbb{R}^r : x \mapsto (c_1 \log |x^{(1)}|, \ldots, c_r \log |x^{(r)}|),$$

with constants $c_j = 1$ for $1 \leq j \leq r_1$ and $c_j = 2$ for $j > r_1$.

The image of the unit group $L(U(R))$ is a lattice of determinant

$$\text{Reg}_R := \det \begin{pmatrix} L(E_1) \\ \vdots \\ L(E_r) \end{pmatrix} =: d(L(U(R))).$$

Reg_R is called the **regulator** of the order R.

In case $R = o_F$ we write Reg_F instead of Reg_R.
Independent units

Units $\varepsilon_1, \ldots, \varepsilon_k$ are called **independent**, if a relation

$$\varepsilon_1^{m_1} \cdots \varepsilon_k^{m_k} = 1 \ (m_i \in \mathbb{Z})$$

implies $m_1 = \ldots = m_k = 0$. Otherwise they are said to be **dependent**.

Remark $\varepsilon_1, \ldots, \varepsilon_k$ are independent if and only if $L(\varepsilon_1), \ldots, L(\varepsilon_k)$ are \mathbb{R}-linearly independent.

The computation of fundamental units is usually done by calculating a maximal system of independent units which generates a subgroup of $U(R)$ of small index. Then this subgroup is gradually enlarged to all of $U(R)$.
Independent units

We choose suitable sets of conjugates
\(l = \{i_1, \ldots, i_\mu\} \subset \{1, \ldots, r_1 + r_2\} \).

By \(\tilde{l} \) we denote the subset of \(\{1, \ldots, n\} \) containing \(i_1, \ldots, i_\mu \) and also all \(i_\nu + r_2 \) in case \(i_\nu > r_1 \) belongs to \(l \).

We set
\[
\#\tilde{l} = \tilde{\mu}, \quad J = \{1, \ldots, r_1 + r_2\} \setminus l, \quad \tilde{J} = \{1, \ldots, n\} \setminus \tilde{l}.
\]
Independent units

Then we calculate a sequence of elements $\{\beta_{l,k}\}_{k \in \mathbb{Z} \geq 0}$ and modules $M_{l,k}$ with the following properties:

$$\beta_{l,0} = 1, \ M_{l,0} := R$$

$$\beta_{l,k+1} \in M_{l,k}, \ M_{l,k+1} := \frac{1}{\beta_{l,k+1}} M_{l,k}$$

$$|\beta_{l,k+1}(j)| < 1 \ \forall j \in \tilde{I}, \ |\beta_{l,k+1}(j)| \geq 1 \ \forall j \in \tilde{J},$$

$$\prod_{i=0}^{k+1} |N(\beta_{l,i})| \leq \tilde{C}$$

with a fixed constant $\tilde{C} > 0$.
Independent units

Next we compute $\beta_{I,k+1} \in M_{I,k}$. We choose $d \geq 1$ sufficiently large, for example $d \geq 2^{n(n-1)/2}|d(R)|$. Then we set

$$
\lambda_j = d \quad \text{for } j \in \tilde{J}, \quad \lambda_j = d^{1-n/\tilde{\mu}} \quad \text{for } j \in \tilde{I}.
$$

For a \mathbb{Z}–Basis $\omega_1, \ldots, \omega_n$ of $M_{I,k}$ we define a positive definite quadratic form with attached weights:

$$
T_{2,\lambda}(x) = \sum_{j=1}^{n} \lambda_j^{-2} \left| \sum_{i=1}^{n} x_i \omega_i(j) \right|^2.
$$

$\beta_{I,k+1}$ is chosen as first basis element of a basis of $M_{I,k}$ which is LLLL–reduced with respect to $T_{2,\lambda}$.
Independent units

Upon detecting modules $M_{l,\mu} = M_{l,\nu}$ with indices $\mu > \nu$ we obtain a unit

$$\varepsilon = \prod_{k=\nu+1}^{\mu} \beta_{l,k}.$$

with

$$|\varepsilon^{(j)}| < 1 \ \forall j \in \tilde{I} \text{ and } |\varepsilon^{(j)}| \geq 1 \ \forall j \in \tilde{J}.$$

These ideas can be made more efficient by using factor bases and relations, similar to class group computations.
Independent units

A factor basis is a set \mathcal{B} of prime ideals of R, say,

$$\mathcal{B} = \{p_1, \ldots, p_v\}.$$

By relations we denote elements α_i of R (or F) for which the principal ideals $\alpha_i R$ are power products of the elements of \mathcal{B}:

$$\alpha_i R = \prod_{j=1}^{w} p_j^{a_{ij}}.$$
Independent units

Hence, a relation is in $1 - 1$–correspondence with an exponent vector $a_i = (a_{i1}, \ldots, a_{iv})$. Having found sufficiently many relations

$$a_1, \ldots, a_k,$$

e.g. $k > v$, we obtain non–trivial linear presentations

$$\sum_{\mu=1}^{k} m_\mu a_\mu = 0 \ (m_\mu \in \mathbb{Z}),$$

hence, a unit

$$\varepsilon = \prod_{\mu=1}^{k} \alpha_\mu^{m_\mu}$$

of R.
Independent units

Clearly, we are in need of a method for proving the dependence/independence of the calculated units.

Theorem (Dobrowolsky) An element $\alpha \in o_F$ is either a root of unity or there exists a conjugate $\alpha^{(j)}$ of α subject to

$$|\alpha^{(j)}| > 1 + \frac{1}{6} \log n \frac{\log n}{n^2}.$$

Corollary 1 A unit $\varepsilon \in o_F$ is either a root of unity or its image in logarithmic space satisfies

$$\| L(\varepsilon) \|_2 > \frac{21}{128} \log n \frac{\log n}{n^2}.$$
Corollary 2 If F is totally real then $\alpha \in o_F$ is either of the form $\cos q\pi \ (q \in \mathbb{Q})$ or it has a conjugate $\alpha^{(j)}$ subject to

$$|\alpha^{(j)}| > 2 + \frac{1}{1152} \frac{\log^2 2n}{n^4}.$$

At this stage we assume that we know $TU(R)$ as well as r independent units $\varepsilon_1, \ldots, \varepsilon_r$ of R. If we know an upper bound for the index of

$$U := \langle TU(R), \varepsilon_1, \ldots, \varepsilon_r \rangle$$

in the full unit group $U(R)$ then there are well known methods for enlarging U to $U(R)$. That index is easily seen to be

$$(U(R) : U) = \frac{d(L(U))}{d(L(U(R)))}.$$
Regulator bounds I

Since $d(L(U))$ can be explicitly calculated it suffices to determine a lower bound for the regulator $d(L(U(R))) = \text{Reg}_R$ in order to obtain an upper bound for that index.

$$\text{Reg}_F \geq w \frac{(1+\gamma)(1+2\gamma)}{2} \Gamma(1+\gamma)^{r_1+r_2} \times \Gamma(3/2+\gamma)^{r_2} 2^{-r_1-r_2} \pi^{-r_2/2} \times \exp\left((-1-\gamma) \left((r_1 + r_2) \frac{\Gamma'}{\Gamma}((1 + \gamma)/2) + r_2 \frac{\Gamma'}{\Gamma}(1 + \gamma/2) + 2/\gamma + 1/(1 + \gamma)\right)\right).$$

This estimate is reasonably good for $n \geq 6$ and for small discriminants. The values for γ lie in the interval $]0, 1[$. (Zimmert 1981)
Regulator bounds I

Since \(d(L(U)) \) can be explicitly calculated it suffices to determine a lower bound for the regulator \(d(L(U(R))) = \text{Reg}_R \) in order to obtain an upper bound for that index.

\[
\text{Reg}_F \geq \frac{(1+\gamma)(1+2\gamma)}{2} \Gamma(1+\gamma)^{r_1+r_2} \\
\times \Gamma(3/2 + \gamma)^{r_2} 2^{-r_1-r_2} \pi^{-r_2/2} \\
\times \exp \left((-1-\gamma) \left((r_1 + r_2)^{\Gamma'} \left((1+\gamma)/2 \right) \right) \\
+ r_2^{\Gamma'} (1+\gamma/2) + 2/\gamma + 1/(1+\gamma) \right).
\]

This estimate is reasonably good for \(n \geq 6 \) and for small discriminants. The values for \(\gamma \) lie in the interval \(]0, 1[\).
(Zimmert 1981)
Regulator bounds II

An upper bound:

$$\text{Reg}_F < w 2^{2-r_1} (2\pi)^{-r_2} \left(\frac{be \log |d_F|}{n-1} \right)^{n-1} \sqrt{|d_F|}$$

for $b = (1 + \log \pi/2 + r_2 \log 2/n)^{-1}$.

(Siegel 1969)

Let F be primitive. We put $\kappa = 4^{\lfloor n/2 \rfloor}$ in case F is totally real, else $\kappa = n^n$. Then we have:

$$\text{Reg}_R \geq \left(\frac{3(\log(|d(R)|/\kappa))^2}{(n-1)n(n+1) - 6r_2} \right)^r \frac{2^{r_2}}{n\gamma_r^r} \right)^{1/2}.$$

(P 1977)
Examples of regulators

Already for real-quadratic number fields with discriminants of the same size the corresponding values of the regulators Reg_F can differ substantially:

\[
\begin{array}{ccccc}
 d_F & 4 \cdot 82 & 4 \cdot 83 & 4 \cdot 86 & 4 \cdot 87 \\
 \text{Reg}_F & 2.8934 & 5.0998 & 9.9431 & 4.0250 \\
\end{array}
\]

\[
\begin{array}{ccccc}
 d_F & 4 \cdot 9930 & 4 \cdot 9931 & 9933 & 4 \cdot 9934 \\
 \text{Reg}_F & 23.8663 & 189.0783 & 5.0074 & 221.3672 \\
\end{array}
\]
We choose a constant $K \geq (1 + \sqrt{2})n$ and enumerate the set

$$S_K := \{\alpha \in R \mid T_2(\alpha) < K\} \cup \{\alpha \in R \mid \alpha^{-1} \in R, T_2(\alpha^{-1}) < K\}.$$

Obviously, $TU(R)$ is contained in S_K.

Let us also assume that S_K contains k independent units ($0 \leq k \leq r$).
Computing regulator bounds II

Next we calculate

\[M_i^* = \begin{cases}
\min \{ C \mid \exists \varepsilon_1, \ldots, \varepsilon_i \in U(R) \cap S_K \text{ indep. with } \sum_{j=1}^{n} \log^2 |\varepsilon_i^{(j)}| \leq C \} \\
\text{for } 1 \leq i \leq k \\
K \text{ for } k + 1 \leq i \leq r
\end{cases} \]

and then

\[\tilde{M}_i := \frac{n-j}{4} \text{arcosh}^2 \left(\frac{M_i^* - j}{n-j} \right). \]

The rational integer \(j \) is to be chosen in the interval \([0, n - 2]\) as small as possible.
Lemma A unit $\varepsilon \in U_R$ with $T_2(\varepsilon) \geq M_i^*$ and $T_2(\varepsilon^{-1}) \geq M_i^*$ satisfies
\[
\sum_{j=1}^{n} \log^2 |\varepsilon^{(j)}| \geq \tilde{M}_i .
\]

From this we deduce the following lower regulator bound.

Corollary The regulator Reg_R of the order R of F satisfies
\[
\text{Reg}_R \geq (\tilde{M}_1 \cdots \tilde{M}_r 2^{r_2} n^{-1} \gamma_r^{-r})^{1/2} .
\]
Enlarging subgroups I

For this we need to test units of the form $\varepsilon_0^{m_0} \cdot \cdot \varepsilon_r^{m_r}$ with $\varepsilon_0 = \zeta$, whether they are p-th powers for a prime number p smaller than the index of U in $U(R)$.

At first, the elements ε_i are tested. If ε_i is not a p-th power, then the polynomial $t^p - \varepsilon_i \in F[t]$ is irreducible.

According to the Chebotarev Density Theorem there exists a prime ideal q in \mathcal{O}_F which does not contain the discriminant of F and for which $t^p - \varepsilon_i$ remains irreducible in $\mathcal{O}_F/q[t]$.
The prime number \(p \) must divide \(N(q) - 1 \). (Otherwise, there exists \(u \in \mathbb{N} \) with \(pu \equiv 1 \mod (N(q) - 1) \) implying \((\varepsilon_i^q)^p = \varepsilon_i \) in \(o_F/q \) in contradiction to our choice of \(q \).) It follows that \(p \) divides the order of \(\varepsilon_i \) in \(o_F/q \).

Hence, for \(j = i + 1, \ldots, r \) there exist unique exponents \(\nu_j \in \{0, 1, \ldots, p - 1\} \) such that \(\varepsilon_i^{\nu_j} \varepsilon_j \) is congruent to a \(p \)-th power modulo \(q \).

We therefore replace the generating elements \(\varepsilon_j \) by \(\varepsilon_i^{\nu_j} \varepsilon_j \) for \((i + 1 \leq j \leq r) \), i.e. we set \(\tilde{\varepsilon}_i = \varepsilon_i \), \(\tilde{\varepsilon}_j = \varepsilon_i^{\nu_j} \varepsilon_j \).
In any equation $\omega^p = \tilde{\varepsilon}_i^{m_i} \cdots \tilde{\varepsilon}_r^{m_r}$ the product $\tilde{\varepsilon}_{i+1}^{m_{i+1}} \cdots \tilde{\varepsilon}_r^{m_r}$ is congruent to a p-th power modulo q. Then also $\tilde{\varepsilon}_i^{m_i}$ must be a p-th power yielding $m_i = 0$.

As a consequence we need to test only, whether $\tilde{\varepsilon}_{i+1}^{m_{i+1}} \cdots \tilde{\varepsilon}_r^{m_r}$ are p-th powers instead of $\varepsilon_i^{m_i} \cdots \varepsilon_r^{m_r}$.

Applying this idea for $i = 0, 1, \ldots, r - 1$ (respectively $i = 1, \ldots, r - 1$ in the case that ε_0 is itself a p-th power) we reduce the number of necessary tests for p-th powers from roughly p^r to at most $r + 1$.
Example 1

We let $F = \mathbb{Q}(\rho)$ with $\rho^{19} + 2 = 0$. The Dedekind test implies $\mathcal{O}_F = \mathbb{Z}[\rho]$. We put $\omega_i := \rho^{i-1} \ (1 \leq i \leq 19)$. The discriminant of F is

$$d_F = -19^{19}2^{18} = -518630842213417245507316350976 .$$

With a suitable factor basis and relations we calculate a system of independent units. The corresponding coefficient vectors are

\[
\begin{align*}
\epsilon_1 &= [-1, 2, -1, -2, -6, 2, -1, 1, -2, -3, -2, 2, 1, 0, -4, 2, 1, 1] \\
\epsilon_2 &= [-15, 6, 7, -15, 7, 5, -13, 8, 2, -11, 9, 0, -9, 9, -1, -7, 8, -2, -5] \\
\epsilon_3 &= [-45, 44, -41, 41, -38, 38, -37, 33, -35, 33, -29, 32, -29, 26, -29, 26, -24, 25, -23] \\
\epsilon_4 &= [-3, -6, -5, -1, 8, 8, 1, -5, -5, -2, -2, 1, 4, 6, 0, -5, -5, -1, 2] \\
\epsilon_5 &= [-7, 4, -3, -1, 4, -4, 4, -1, -1, 3, -5, 2, 0, -1, 4, -3, 1, -1, -2] \\
\epsilon_6 &= [17, -38, 0, 31, -18, -21, 26, 5, -29, 8, 23, -19, -13, 24, 1, -23, 10, 18, -16] \\
\epsilon_7 &= [9, 2, -2, -2, -2, -2, -5, -5, -5, 1, 4, 6, 3, 1, 1, 2, 1, -3, -5] \\
\epsilon_8 &= [-19, 15, 9, -10, -3, -4, 15, -2, -13, 5, 3, 7, -10, -6, 13, -1, -4, -4, 2] \\
\epsilon_9 &= [-91, -147, -84, 21, 44, -32, -109, -91, -2, 58, 28, -45, -67, -9, 60, 67, 11, -34, -15]
\end{align*}
\]
Example II

The regulator of that system of independent units is 36273616083.86579.
Via $K = 2T_2(\omega_n)$ we obtain a lower regulator bound 433281.296, hence an upper bound of 83718 for the index.
The enlarging of the subgroup yields fundamental units

\[
\begin{align*}
E_1 &= [-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\
E_2 &= [-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\
E_3 &= [1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\
E_4 &= [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0] \\
E_5 &= [1, -1, 0, -1, 0, -2, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0] \\
E_6 &= [-1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0] \\
E_7 &= [1, -2, 0, 2, -1, -1, 1, 1, -2, 0, 1, -1, -1, 1, 0, -1, 0, 1 - 1] \\
E_8 &= [-1, 2, 1, -3, 2, -1, -2, 1, 0, -2, 2, -1, -1, 1, -1, -2, 1, -2, -1] \\
E_9 &= [1, -3, 2, -1, 1, 0, -2, 1, -1, 1, 0, -1, 0, 0, 1 - 1, 0, 0]
\end{align*}
\]

with regulator 47980973.65927 and exact index

\[
(U_F : \langle -1, \varepsilon_1, \ldots, \varepsilon_9 \rangle) = 756 = 2^2 \ 3^3 \ 7.
\]
Example of a norm equation

Let $F = \mathbb{Q}(\sqrt{10})$. Its maximal order is $o_F = \mathbb{Z}[\sqrt{10}]$ with fundamental unit $E = 3 + \sqrt{10}$ of norm -1. The ideal $2o_F$ is the square of the prime ideal $p = 2o_F + \sqrt{10}o_F$. We want to check, whether p is principal. This is done by computing all $\beta \in o_F$ with absolute norm 2. Hence, we need to solve

$$|x^2 - 10y^2| = 2 \ (x, y \in \mathbb{Z}) .$$

Multiplying β by a suitable power of E we can assume that

$$1 < x + y\sqrt{10} < E .$$
Example of a norm equation (cont.)

Combining this inequality with the condition
$$(x + y\sqrt{10})(x - y\sqrt{10}) = \pm 2$$ we obtain lower and upper bounds for y:

$$1 \mp \frac{2}{E} < 2y\sqrt{10} < E \mp \frac{2}{E}.$$

Only $y = 1$ satisfies these inequalities. Hence, there is no solution of that norm equation.