General background, with some subtleties emphasized
1. Definition of Galois groups
2. The Trinks polynomial and $C = \mathbb{C}$
3. The Trinks polynomial and $C = \mathbb{Q}_{1849}$
4. Comparing two choices of auxiliary fields
5. Decomposition groups
6. T-numbers
Basic computational methods
7. Use Magma!
8. Frobenius partitions
9. Ramification partitions
10. Resolvents
1. Definition of Galois groups. Let \(\mathbb{Q} \) be a field and let \(F \) be a degree \(n \) separable algebra over \(\mathbb{Q} \).

For concreteness, we work with a presentation \(F = \mathbb{Q}[x]/f(x) \) for \(f(x) \in \mathbb{Q}[x] \) a monic separable polynomial (such a presentation may not exist for \(\mathbb{Q} \) finite and \(F \) a non-field; if one is interested in this case, one can translate back to the more abstract language).

Let \(C \) be a field extension of \(\mathbb{Q} \) in which \(f(x) \) has \(n \) distinct roots. Let \(X \subset C \) be this set of roots. \(F^{\text{gal}} \) be the subalgebra of \(C \) generated by \(X \). Then \(G = \text{Gal}(F^{\text{gal}}/\mathbb{Q}) \) is the group of automorphisms of \(F^{\text{gal}} \) which fix \(\mathbb{Q} \).

One normally views \(G \) as inside the symmetric group \(\text{Sym}(X) \) of permutations of \(X \).
2. The Trinks polynomial and $C = \mathbb{C}$. For $x^7 - 7x - 3$ and $C = \mathbb{C}$, the roots are:

$$
\begin{align*}
\alpha_3 & \approx -0.62 + 1.21i \\
\alpha_1 & \approx -1.29 \\
\alpha_2 & \approx -0.62 - 1.21i \\
\alpha_4 & \approx -0.43 \\
\alpha_5 & \approx 0.76 - 1.21i \\
\alpha_6 & \approx 0.76 + 1.21i \\
\alpha_7 & \approx 1.44
\end{align*}
$$

Form the resolvent

$$
g(x) = \prod_{i < j < k} (x - (\alpha_i + \alpha_j + \alpha_k)) = g_7(x) g_{28}(x).
$$

Working in sixteen digit precision, all coefficients of $g(x) \in \mathbb{Z}[x]$ are approximated within 0.000003. Identifying roots of $g_7(x)$ as lines in $\mathbb{P}^2(\mathbb{F}_2)$, the Galois group becomes the symmetry group of a projective plane:
3. The Trinks polynomial and $C = \mathbb{Q}_{1879}$. For $x^7 - 7x - 3$ and $C = \mathbb{Q}_{1879}$, the roots are $(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7) \approx (-508, -194, 82, 298, 407, 883, 911)$. Working mod 1879^3 suffices to correctly identify $g_{35}(x)$. The seven roots of $g_7(x)$ are $\beta_1 + \beta_2 + \beta_6$, Again the Galois group becomes the symmetry group of a projective plane:

The pairings $(\alpha_1, \beta_1), (\alpha_2, \beta_5), (\alpha_3, \beta_3), (\alpha_4, \beta_6), (\alpha_5, \beta_4), (\alpha_6, \beta_7), (\alpha_7, \beta_2)$ give one of the 168 structure-preserving correspondences with the previous slide.

If one works with two auxiliary fields C_v and C_w, one has two Galois groups

\[
G_v = \text{Gal}(F^{\text{gal},v}/\mathbb{Q}) \subseteq \text{Sym}(X_v), \\
G_w = \text{Gal}(F^{\text{gal},w}/\mathbb{Q}) \subseteq \text{Sym}(X_w).
\]

Galois theory says that $F^{\text{gal},v}$ and $F^{\text{gal},w}$ are isomorphic and hence G_v and G_w are isomorphic. Different isomorphisms $i_1, i_2 : F^{\text{gal},v} \rightarrow F^{\text{gal},w}$ induce different bijections $X_v \sim \rightarrow X_w$. They induce typically different isomorphisms $G_v \sim \rightarrow G_w$.

However these isomorphisms $G_v \sim \rightarrow G_w$ are always conjugate. Thus one has unambiguous agreement on things like conjugacy classes, complex characters, abelianizations, and cohomology groups. Notationally, one has unambiguous objects $G^h, \hat{G}, G^{\text{ab}},$ and $H^*(G, \mathbb{Z})$. One can expect to compute them purely algebraically, never leaving \mathbb{Q}, with no reference to explicit roots anywhere.
5. Decomposition groups for $Q = \mathbb{Q}$. Working with \mathbb{C} as the auxiliary field gives an important piece of structure for free: a homomorphism from $\text{Gal}(\mathbb{C}/\mathbb{Q}) = \{\text{Id}, \sigma_\infty\}$ to G_∞ or equivalently a complex conjugation element $\sigma_\infty \in G_\infty$.

Taking $\overline{\mathbb{Q}}_p$ gives much more, as it gives a homomorphism $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to G_p$. The image is the decomposition group $D_p \subseteq G_p$. It comes with a decreasing filtration measuring ramification and its wildness. In particular if p is unramified, one gets a canonical element $\sigma_p \in G_p$, the Frobenius element. If it is tamely ramified, one gets a canonical element $\tau_p \in G_p$.

At the level of conjugacy classes, these elements σ_v and τ_p all sit in the same set G^\flat. At the level of the ambient symmetric groups they all become partitions. Thus Galois theory coordinates the local invariants of number fields.
6. **T-numbers.** Let \(\mathcal{T}_n \) be the set of conjugacy classes of transitive subgroups of \(S_n \). As examples,

\[
\mathcal{T}_4 = \{ 4T1, 4T2, 4T3, 4T4, 4T5 \} = \{ C_4, V, D_4, A_4, S_4 \}
\]

\[
\mathcal{T}_5 = \{ 5T1, 5T2, 5T3, 5T4, 5T5 \} = \{ C_5, D_5, F_5, A_5, S_5 \}
\]

\[
\begin{array}{c|cccccccccccc}
 n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
|\mathcal{T}_n| & 1 & 1 & 2 & 5 & 5 & 16 & 7 & 50 & 34 & 45 & 8 & 301 & 9 \\
\end{array}
\]

The **fine** problem of computing Galois groups of number fields has an irreducible \(f(x) \in \mathbb{Q}[x] \) and a place \(v \) of \(\mathbb{Q} \) as input. As output it has the root-set \(X_v \) and the Galois group \(G_v \subseteq \text{Sym}(X_v) \).

The **coarse** problem of computing Galois groups has just \(f(x) \in \mathbb{Q}[x] \) as input. As output it has the corresponding \(nTj \).

The fine and the coarse level each have their own advantages. The next slides cover elementary coarse-level techniques. Friday will include fine-level computations.
7. Use Magma!

```plaintext
>PR<x> := PolynomialRing(Integers());
>GaloisGroup(x^7-7*x-3);
Permutation group acting on a set of cardinality 7
Order = 168 = 2^3 * 3 * 7
   (2, 4)(3, 7)
   (1, 6, 4, 3)(5, 7)
[ 31615*$.1^6 - 21962*$.1^5 + 31333*$.1^4
  - 24197*$.1^3 + 7399*$.1^2
  + 42492*$.1 - 75664 + O(11^5), ...
] GaloisData over Z_11
>G, r, S := GaloisGroup(x^7-7*x-3: Prime:=13);
>G;
Order = 168 = 2^3 * 3 * 7
   (2, 5)(6, 7)
   (1, 7)(2, 6, 3, 4)
>r;
[ -61424*$.1^3 + 47369*$.1^2 - 26589*$.1
  + 178417 + O(13^5), ...
] > TransitiveGroupDescription(G);
L(7) = L(3,2)
```
8. Frobenius partitions. To get lower bounds on Galois groups one can use Frobenius partitions. For example,

\[x^{12} - 6x^{11} - 6x^{10} + 40x^9 + 105x^8 + 120x^7 \\
-1790x^6 + 2070x^5 + 885x^4 + 480x^3 \\
-2520x^2 - 1440x - 240 \]

has field discriminant the perfect square \(D = 2^{18}3^{18}5^{12} \) and thus \(G \subseteq A_{12} \). Factorization patterns begin

\[(\lambda_7, \lambda_{11}, \lambda_{13}, \lambda_{17}) = (6 6, 11 1, 8 2 1 1, 8 4) \]

This is more than enough to reduce the 301 possibilities to \(G \in \{M_{12}, A_{12}\} \).

There is a canonical Bayesian formula for guessing \(G \) based on say an \textit{a priori} assumption of 1-to-1 odds for \(M_{12} \). Each appearance of a partition \(\lambda \) either definitively proves \(G = A_{12} \) or increases the odds for \(M_{12} \) by the ratio \(r(\lambda) = \text{prob}(M_{12}, \lambda)/\text{prob}(A_{12}, \lambda) \), as in e.g. \(r(8 2 1 1) = (1/8)/(1/16) = 2 \). After 100 good primes, the odds are about \(6.05 \times 10^{34} \)-to-1 for \(M_{12} \).
9. Lower bounds from bad primes. There are many ways to use the bad primes to get lower bounds on Galois groups. For example F from the last slide has discriminant $2^{18}3^{18}5^{12}$. Since all exponents are ≥ 12, all bases are wildly ramified. Thus $|G|$ is divisible by 2, 3, and 5.

In a more elementary way, another polynomial defining F, with coefficients factored, is

x^{12} x^{11} x^{10} x^9 x^8 x^7 x^6 x^5 x^4 x^3 x^2 x	1												
2 :	1	4	8	8	8	4	8	8	8	16	8		
3 :	1	9	1	3	3	1	3	3	9	9	3		
5 :	1	1	5	5	5	5	25	25	125	25	25		
rest :	1	0	−1	−1	1	7	149	11	17	1	1	0	−1

The nonzero slopes of the Newton polygon at $p = 2$, 3, and 5 are $1/4$, $1/6$, and $1/5$. Thus there are p-adic roots of the form $(\text{unit})2^{1/4}$, $(\text{unit})3^{1/6}$, and $(\text{unit})5^{1/5}$. Thus $|G|$ is divisible by 4, 6, and 5, and hence 60 (still leaving the possibilities at M_{12} and A_{12}).
10. Resolvents. To compute Galois groups exactly, one can use constructions canonically building new sets from n-element sets X and their corresponding resolvents. For example, the passage from X to $X \times X - \Delta$ corresponds to passing from a polynomial with roots α_i to one with roots $\alpha_i - \alpha_j$, with $i \neq j$. Algebraically, this is achieved by

$$f(x) \mapsto \text{Res}_y(f(y), f(y + x))/y^n.$$

The general resolvent from $X \mapsto \text{Subsets}_3(X)$ nearly distinguishes all possibilities for $n = 7$:

<table>
<thead>
<tr>
<th></th>
<th>C_7</th>
<th>D_7</th>
<th>F^+_7</th>
<th>F_7</th>
<th>$L_3(2)$</th>
<th>A_7</th>
<th>S_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7T1</td>
<td>7T2</td>
<td>7T3</td>
<td>7T4</td>
<td>7T5</td>
<td>7T6</td>
<td>7T7</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>14</td>
<td>73</td>
<td>21</td>
<td>14</td>
<td>28</td>
<td>7</td>
<td>35</td>
</tr>
</tbody>
</table>

To distinguish M_{12} from A_{12}, the lowest degree absolute resolvent is $\text{Partitions}_{6,6}(X)$ with degree $\frac{1}{2}\binom{12}{6} = 462 = 2 \cdot 3 \cdot 7 \cdot 11$. For A_{12} fields it is irreducible, while for M_{12} fields it factors as $396 + 66 = 2^2 \cdot 3^2 \cdot 11 + 2 \cdot 3 \cdot 11$. In our case, the coefficients average 313 digits and Magma factors the polynomial in about a second.