High-precision methods for zeta functions
Part 3: fast evaluation of sequences

Fredrik Johansson
INRIA Bordeaux

UNCG Summer School in Computational Number Theory
May 18–22, 2015
Linearly recurrent sequences

\[
\begin{align*}
\underbrace{c(k + 1)}_{\text{vector}} &= \underbrace{M(k)}_{r \times r \text{ matrix}} \cdot \underbrace{c(k)}_{\text{vector}}
\end{align*}
\]

Order-\(r\) scalar recurrence

\[
c(k + r) + a_{r-1}(k)c(k + r - 1) + \ldots + a_0(k)c(k)
\]

can be rewritten

\[
\begin{bmatrix}
 c(k + 1) \\
 \vdots \\
 c(k + r)
\end{bmatrix} =
\begin{bmatrix}
 1 & & \\
 & \ddots & \\
 -a_0(k) & \ldots & -a_{r-1}(k)
\end{bmatrix}
\begin{bmatrix}
 c(k) \\
 \vdots \\
 c(k + r - 1)
\end{bmatrix}
\]
How to compute the nth entry

Naively

$$c(1) = M(0)c(0)$$
$$c(2) = M(1)c(1)$$
$$c(3) = M(2)c(2)$$
$$\vdots$$
$$c(n) = M(n-1)c(n-1)$$

Cleverly

$$c(n) = [M(n-1)M(n-2) \cdots M(1)M(0)]c(0)$$

Exploit structure of matrix product!
Example: Fibonacci numbers

\[
\begin{bmatrix}
F(k + 1) \\
F(k + 2)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
F(k) \\
F(k + 1)
\end{bmatrix}
\]

\(M(k)\)

\(M\) is constant: \(M(n - 1)M(n - 2) \cdots M(0) = M^n\)

We can compute \(M^n\) in \(O(\log(n))\) arithmetic operations using the binary exponentiation algorithm.

We can also diagonalize \(M\), giving

\[F(n) = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}}\]
Example: Taylor series of D-finite functions

\[T(k) = \frac{x^k}{k!}, \quad T(k + 1) = \left(\frac{x}{k + 1}\right) T(k) \]

\[S(n) = \sum_{k=0}^{n-1} \frac{x^k}{k!}, \quad S(k + 1) = T(k) + S(k) \]

\[
\begin{bmatrix}
 T(k+1) \\
 S(k+1)
\end{bmatrix}
= \underbrace{
\begin{bmatrix}
 x/(k+1) \\
 1 \\
 1 \\
 M(k)
\end{bmatrix}
}_{M(k)}
\begin{bmatrix}
 T(k) \\
 S(k)
\end{bmatrix}
\]

With \(n \approx \infty \),

\[
\begin{bmatrix}
 0 \\
 \exp(x)
\end{bmatrix}
\approx
M(n-1)M(n-2) \cdots M(1)M(0)
\begin{bmatrix}
 1 \\
 0
\end{bmatrix}
\]
Three algorithms

- Binary splitting
 - Growing objects, e.g. \mathbb{Q}, $\mathbb{Q}[x]$

- Fast multipoint evaluation
 - Fixed-precision objects, e.g. \mathbb{R}, $\mathbb{Z}/p\mathbb{Z}$

- Rectangular splitting
 - Mixed objects, e.g. $\mathbb{Q} + \mathbb{R}$
Binary splitting

Computing $n! = 1 \cdot 2 \cdots (n-2) \cdot (n-1) \cdot n$ using repeated multiplication:

1
2
6
24
120
720
5040
40320
362880
3628800
39916800
479001600
6227020800
87178291200
1307674368000
20922789888000

Height: n

Width: $O(n \log n)$

Bit complexity: $O^\sim(n^2)$
Binary splitting

Computing $n! = 1 \cdot 2 \cdots (n - 2) \cdot (n - 1) \cdot n$ using binary splitting:

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
2 & 12 & 30 & 56 & 90 & 132 & 182 & 240 \\
24 & 1680 & 11880 & 43680 \\
40320 & 518918400 \\
20922789888000
\end{array}
\]

Height: $O(\log n)$
Width: $O(n \log n)$
Bit complexity: $O^\sim(n)$

This idea applies to any linear recurrence over \mathbb{Q} (or an algebraic number field) where the bit length of the entries in $M(k)$ grows slowly, e.g. like $O(\log k)$
High-precision computation of constants

[Machin, 1706]:

\[
\frac{\pi}{4} = 4 \arctan \left(\frac{1}{5} \right) - \arctan \left(\frac{1}{239} \right), \quad \arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)}
\]

[Ramanujan, 1910] – not proved until [Borwein2, 1987]:

\[
\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103 + 26390k)}{(k!)^4 396^{4k}}
\]

[Chudnovsky2, 1989]:

\[
\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k(6k)!(13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k+3/2}}
\]
The current π record is $13\,300\,000\,000\,000$ digits, set in 2014. The record before 1946 was 707 digits (only 527 correct), accomplished by William Shanks in 1873 after 15 years of work.

(Credit: en.wikipedia.org/wiki/Chronology_of_computation_of_pi)
Fast logarithms of nearby integers

To evaluate

$$\sum_{k=1}^{N} \frac{1}{k^s} = \sum_{k=1}^{N} \exp(s \log(k))$$

we need the logarithms of consecutive primes $k = 2, 3, 5, 7, 11, \ldots$.

We can compute $\log(q)$ from $\log(p)$ using

$$\log(q) = \log(p) + 2 \text{atanh} \left(\frac{q - p}{q + p} \right)$$

where

$$\text{atanh}(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k + 1)}$$
Fast computation of some more constants

\[\zeta(3) = \frac{1}{64} \sum_{k=0}^{\infty} (-1)^k (205k^2 + 250k + 77) \frac{(k!)^{10}}{[(2k + 1)!]^5} \]

\[(1 - 2^{1-m})\zeta(m) \approx -\frac{1}{d_n} \sum_{k=0}^{n-1} \frac{(-1)^k (d_k - d_n)}{(k + 1)^m}, \quad d_k = n \sum_{i=0}^{k} \frac{(n + i - 1)!4^i}{(n - i)!(2i)!} \]
Euler’s constant

The fastest known algorithm for Euler’s constant ($\gamma = 0.577\ldots$) is due to Richard Brent and Edwin McMillan (1980).

$$\gamma = \frac{S_0(2n) - K_0(2n)}{I_0(2n)} - \log(n)$$

$$S_0(x) = \sum_{k=0}^{\infty} \frac{H_k}{(k!)^2} \left(\frac{x}{2} \right)^{2k}, \quad I_0(x) = \sum_{k=0}^{\infty} \frac{1}{(k!)^2} \left(\frac{x}{2} \right)^{2k}$$

$$2xI_0(x)K_0(x) \sim \sum_{k=0}^{\infty} \frac{[(2k)!]^3}{(k!)^4 8^{2k} x^{2k}}$$

If all series are truncated optimally, the error is less than $24e^{-8n}$. This was not proved rigorously until recently [Brent and FJ, A bound for the error term in the Brent-McMillan algorithm, 2015]
Fast evaluation of D-finite functions

If \(f(z) \) satisfies a linear differential equation with coefficients in \(\overline{\mathbb{Q}}[z] \),
then for any fixed \(c \in \mathbb{C} \), we can compute \(r \in \mathbb{Q}[i] \) with

\[
|r - f(c)| < 2^{-p}
\]

in \(O^\sim(p) \) bit operations [with some caveats].

Idea: analytic continuation + binary splitting

[Chudnovsky\(^2\), 1986, van der Hoeven, 2000]
Binary splitting for polynomials

Example: rising factorials $x(x + 1) \cdots (x + n - 1)$

$M(k) = (x + k), \quad n = 4$

\[
\begin{align*}
(x + 3) & \quad (x + 2) & \quad (x + 1) & \quad (x + 0) \\
(x^2 + 5x + 6) & \quad (x^2 + x) & \quad (x^4 + 6x^3 + 11x^2 + 6x)
\end{align*}
\]

Assuming that the entries in $M(k)$ have bounded degree, this costs $O^\sim(n)$ arithmetic operations.

Assuming that the entries in $M(k)$ have slowly growing coefficients (e.g. $O(\log k)$ bits), this costs $O^\sim(n^2)$ bit operations.
Fast multipoint evaluation

A polynomial of degree n can be evaluated at n points using $O(M(n) \log n) = O^\sim(n)$ arithmetic operations.
Assume that $M(k)$ is a matrix of polynomials in k

Example: $M(k) = (k + 1)$, $n = 9$

$$P = (k + 3)(k + 2)(k + 1) = k^3 + 6k^2 + 11k + 6$$

binary splitting

$$[P(6), P(3), P(0)] = [504, 120, 6]$$

fast multipoint evaluation

repeated multiplication

$$P(6)P(3)P(0) = 362880$$

This costs $O(M(n^{1/2}) \log n) = O^\sim(n^{1/2})$ arithmetic operations
Application to primes

Wilson’s theorem: an integer $n > 1$ is a prime iff $(n - 1)! \equiv 1 \mod n$.

This gives a terrible $O^\sim(n)$ primality test.

Fast multipoint evaluation gives a no less terrible $O^\sim(n^{1/2})$ primality test.

The same idea is used in Strassen’s deterministic algorithm to factor an integer $N = pq$ with $p < q$ in time $O^\sim(N^{1/4})$.

Idea: let $m = \lfloor N^{1/2} \rfloor$. Then $\gcd(m! \mod N, N) = p$.
If $f(z)$ satisfies a linear differential equation with coefficients in $\mathbb{C}[z]$, then for any fixed $c \in \mathbb{C}$, we can compute $r \in \mathbb{Q}[i]$ with

$$|r - f(c)| < 2^{-p}$$

in $O^\sim(p^{1.5})$ bit operations [with some caveats].

Idea: analytic continuation $+$ fast multipoint evaluation
Rectangular splitting

Assume that the recurrence matrix $M(k)$ contains polynomials of a parameter x

Polynomial coefficients (cheap): $c = 42$

Parameter (expensive): $x = 3.141592653589793238462643383279502884$

Distinguish between operations

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>GOOD</th>
<th>Scalar</th>
<th>OK</th>
<th>Nonscalar</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$x + x$, $c \cdot x$</td>
<td></td>
<td>$x \cdot x$</td>
<td></td>
</tr>
</tbody>
</table>
Rectangular splitting

Evaluate $\sum_{i=0}^{n} \square x^i$ using $O(n)$ scalar and $O(n^{1/2})$ nonscalar operations

\[
\begin{align*}
(\square + \square x + \square x^2 + \square x^3) & + \\
(\square + \square x + \square x^2 + \square x^3) & + x^4 \\
(\square + \square x + \square x^2 + \square x^3) & + x^8 \\
(\square + \square x + \square x^2 + \square x^3) & + x^{12}
\end{align*}
\]

Polynomials: Paterson and Stockmeyer, 1973
Composition of power series: Brent and Kung, 1978
Elementary / hypergeometric functions: Smith, 1989
Rising factorials (special case): Smith, 2001
General matrix polynomial recurrences: FJ, 2014
Optimized algorithm for elementary functions: FJ, 2015
The gamma function revisited

Argument reduction:

$$\Gamma(s + r) = \Gamma(s) \cdot (s(s + 1) + \cdots (s + r - 1))$$

The Stirling series:

$$\log \Gamma(s) = (s - 1/2) \log(s) - s + \frac{2\pi}{2} + \sum_{k=1}^{N-1} \frac{B_{2k}}{2k(2k - 1)s^{2k-1}} + R_N(s)$$

- For $s \to s + x \in \mathbb{C}[\![x]\!]/\langle x^n \rangle$, binary splitting speeds up both steps
- For $s \in \mathbb{C}$, fast multipoint evaluation or rectangular splitting speeds up the argument reduction
- For $s \in \overline{\mathbb{Q}}$, binary splitting speeds up the argument reduction
Gamma function without Bernoulli numbers

\[\Gamma(s) \approx \int_0^N t^{s-1} e^{-t} dt \approx \frac{N^s e^{-N}}{s} \sum_{k=0}^n \frac{N^k}{(1 + s)_k} \]

Partial sums satisfy order-2 recurrence with

\[M(k) = \frac{1}{1 + k + s} \begin{pmatrix} 1 + k + s & 1 + k + s \\ 0 & N \end{pmatrix} \]

For \(p \)-bit precision: \(n \sim N \sim p \)

For \(s \in \mathbb{C} \), bit complexity is \(O^\sim(p^{1.5}) \) with fast multipoint evaluation

For \(s \in \mathbb{Q} \), bit complexity is \(O^\sim(p) \) with binary splitting
Improvement for the gamma function
The Hurwitz zeta function revisited

The power sum:

\[S = \sum_{k=0}^{N-1} \frac{1}{(a + k)^s} \]

The tail:

\[T = \sum_{k=1}^{M} \frac{B_{2k}}{(2k)!} \frac{(s)_{2k-1}}{(a + N)^{2k-1}} \]

- For \(s \to s + x \in \mathbb{C}[[x]]/\langle x^n \rangle \), binary splitting speeds up the tail
- For \(s \to s + x \in \mathbb{C}[[x]]/\langle x^n \rangle \), a transposed version of fast multipoint evaluation speeds up the power sum
Fast power series power sum

\[S = \sum_{k=0}^{N} \frac{1}{(a + k)^{s+x}} = \sum_{i=0}^{N} \left(\sum_{k=0}^{N} \frac{(-1)^i \log^i(a + k)}{i!(a + k)^s} \right) x^i \]

\[V = \begin{bmatrix}
1 & \log(a + 0) & \cdots & \log^N(a + 0) \\
1 & \log(a + 1) & \cdots & \log^N(a + 1) \\
\vdots & \vdots & \ddots & \vdots \\
1 & \log(a + N) & \cdots & \log^N(a + N)
\end{bmatrix} \]

\[Y = [(a + 0)^{-s} \quad (a + 1)^{-s} \quad \ldots \quad (a + N)^{-s}]^T \]

- We want the vector \(V^TY \)
- \(VY \) is multipoint evaluation: \(\sum_i Y_i X_i \) at \(X = \log(a), \ldots, \log(a + N) \)
- A fast (\(O^\sim(N) \) arithmetic operations) algorithm for \(V^TY \) exists by the transposition principle
A few more references

Zeta acceleration

Many slowly converging sums and products can be rewritten as more rapidly converging sums or products taken over zeta values

Example: the prime zeta function

\[P(s) = \sum_{p} \frac{1}{p^s} \]

\[\log(\zeta(s)) = \sum_{p \geq 2} - \log(1 - p^{-s}) = \sum_{p \geq 2} \sum_{k=1}^{\infty} \frac{p^{-ks}}{k} = \sum_{k=1}^{\infty} \frac{P(ks)}{k} \]

By Möbius inversion,

\[P(s) = \sum_{k=1}^{\infty} \mu(k) \frac{\log(\zeta(ks))}{k} \]
The twin prime constant

\[C_2 = \prod_{p \geq 3} \left(1 - \frac{1}{(p - 1)^2} \right) = 0.66016 \ldots \]

A zeta-accelerated representation is:

\[C_2 = \prod_{n=2}^{\infty} \left(\zeta(n)(1 - 2^{-n}) \right)^{-l_n}, \quad l_n = \frac{1}{n} \sum_{d | n} \mu(d)2^{n/d} \]

Further results of this kind can be found in [Flajolet and Vardi, Zeta function expansions of classical constants, 1996 – http://algo.inria.fr/flajolet/Publications/landau.ps]
Khinchin’s constant

For almost all real numbers \(x\), the continued fraction coefficients

\[
x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \ddots}}}
\]

satisfy

\[
\lim_{n \to \infty} (a_1 a_2 \ldots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)}\right)^{\log_2(k)} \equiv K \approx 2.685452 \ldots
\]

A zeta-accelerated representation is:

\[
\log(K) = \frac{1}{\log 2} \sum_{n=1}^{\infty} \frac{\zeta(2n) - 1}{n} \sum_{k=1}^{2n-1} (-1)^{k+1} \frac{1}{k}
\]
Convergence(?) to K for the ordinate $14.1347251417 \ldots$ of the first nontrivial zero of $\zeta(s)$