Faculty
Sebastian Pauli
My research is in computational number theory. I am particularly interested in algorithms for local fields and computational class field theory. Recently I also investigated the distributions of the derivatives of the Riemann Zeta function.
Jan Rychtář
My research
generally consists of building and analyzing mathematical models of
biological phenomena. I use computers as substitutes for experiments
on animals and plants. At the early stages, I usually write a computer
simulation to get a better grip of the problem I need to model. During
later stages, I use usually a simulation to test the properties of the
model as well as to try to verify the model predictions.
Dan Yasaki
I study arithmetic quotients of symmetric spaces. These locally symmetric spaces stand at the intersection of various topics in number theory, geometry, and topology. In particular they are closely related to the theory of automorphic forms. I use explicit reduction theory coming from quadratic forms over number fields in order to construct polyhedral tessellations that can be used to compute cohomological modular forms.
Graduate Students
- William Ely is working on project "Pricing European Stock Options using Stochastic and Fuzzy Continuous Time Processes" under direction of Dr. J. Rychtář.
- Ricky Farr is working on project "Evaluation of the Derivatives of the Riemann Zeta Function on the Left Half Plane" under direction of Dr. S. Pauli.
- George Merrill is working on project "Evolving Spatial Networks" under direction of Dr. J. Rychtář.
- Brian Sinclair is working on project "Polynomial Factorization over Local Fields" under direction of Dr. S. Pauli.