header_nav Search UNCG UNCG Index Contact UNCG Events Calendar Campus Directory URO Home UNCG Home URO Home

Return to 1996-1997 UGB Index
101 Petty Building

Major / Minor Information


Gaylord T. Hageseth, Professor and Head of Department

Professors McCormack; Associate Professors Danford, Meisner, Muir; Adjunct Associate Professor Mosier; Assistant Professor Pratap; Lecturers Knerr, Palit; Research Associate Hellen

Physics and astronomy have long been recognized as constituting the basis for study, research, and understanding in the natural sciences. The undergraduate major program seeks to provide the student with a broad and general background in all areas of physics. With this background, the student should be able to adapt readily to the specialized requirements of a job in industry, as a teacher, or to the specialized graduate study in physics or a number of related fields. Opportunities are provided through electives to sample the concerns of many of these related fields.

The effort required for a non-scientist to understand our technological society is formidable, but essential if an educated man or woman is to intelligently understand and affect our natural surroundings. Recognizing this, the Department of Physics and Astronomy offers for the non-major, with no prerequisites, courses with an overview of physics as well as special interest courses dealing with topics of immediate concern (PHY 203, 205, 209, 211, 212, 235, 333 and 334).

The department also offers graduate programs at the master's degree level. Its faculty members are involved with graduate and, in some cases, undergraduate students in research in computer simulation and computational physics, quantum statistical mechanics, biophysics, observational astronomy and digital image analysis, and pedagogical methods in science teaching. The department uses and administers the Three College Observatory, located in a nearby dark-sky location. This observatory contains the stateís largest (32 inch) reflecting telescope, along with a low light-level image acquisition system. The research of the Department is supported by a local area network linking departmental microcomputers and the campus VAX cluster, a number of laboratories well-equipped with modern instrumentation, and an instrument-making facility.

Physics Major (Bachelor of Arts and Bachelor of Science)

Required: 122 semester hours

The Physics Major is a firm basis for a career in medicine, law, business, sales, engineering, teaching, computing, biophysics, environmental science, or physics.

Students who elect physics as a major need to complete PHY 291, 292, and MAT 293 no later than the end of their sophomore year. Freshmen who declare physics as a major are strongly advised to take PHY 291 and MAT 292 their first semester. If the freshman student is not prepared to take calculus his/her first semester, the student is advised to take MAT 121 or 119 (depending upon the student's background) and CHE 111 and 114 instead of PHY 291, 292 during the first year. Any student who desires to major in physics should contact the head of the department as soon as possible so a proper schedule can be planned.

Bachelor of Arts

College of Arts and Sciences Liberal Education Requirements (CLER) (54-55 hours)

All students must meet the All-University Liberal Education Requirements (AULER). The College of Arts and Sciences, however, has established liberal education requirements for its programs which, while including those of AULER, contain additional requirements in several categories. Therefore, students following this program should adhere to the College requirements. Please note that students who satisfy the College Liberal Education Requirements (CLER) will also satisfy the All-University Liberal Education Requirements (AULER). See pp. 70-73 for a complete description of the College requirements and pp. 65-66 and 71-72 for a listing of courses meeting AULER/CLER requirements.

Major Requirements & Related Area Requirement

Minimum 28 semester hours in physics above the 100-level. Students must have at least a 2.0 grade point average for the required physics and mathematics courses.

Core Courses for Physics Majors

Courses required for the physics major:

1. PHY 291, 292, 321, 321L, 323, 323L, 325, 325L, 327, 425, 425L, 500.
2. Related Areas: CHE 111, 112, 114, 115; CSC 130; MAT 191, 292, 293, 390.


Electives sufficient to complete the 122 semester hours required for degree.

Bachelor of Science

Minimum 36 semester hours in physics above the 100-level. Students must have at least a 2.0 grade point average for the required physics and mathematics courses. Requirements are the same as for the BA degree with the following additional requirements:

PHY 521, 523 and 525

Physics as a Second Major

Students planning to take Physics as a second major must complete all required courses as stated above for the Bachelor of Arts or Bachelor of Science degree.

Physics Minor

A minimum of 15 semester hours in physics courses is to be planned in consultation with a physics faculty member. The usual physics minor program will consist of PHY 291, 292, and at least 7 semester hours of additional courses (excluding PHY 203, 205, 209, 235, 333, and 334). Other quite different programs may be fitted to the individual student's interests and objectives

Teacher Licensure

Students seeking teacher licensure should follow the requirements for the Bachelor of Arts degree. In addition the following are required: BIO 111; CUI 390, 450, 459, 465, and 470; ELC 381; GEO 103; HEA 201; PSY 121. Please see Chapter 7 for complete details on teacher licensure.

Accelerated Masters Program for Undergraduates-
BA in Physics and MBA in Business Administration

The accelerated program in Physics/Business Administration provides the opportunity for a student to complete a BA in Physics (122 hours) within a four-year period and to shorten the time required to finish the MBA.

Interested students should:

  • have some Advanced Placement credit upon admission to UNCG in order to reduce the number of required undergraduate hours. See courses on pp. 20-21 for which AP credit is available.
  • identify themselves as potential accelerated candidates early in their academic careers in order to receive appropriate advising. Although formal admission to an accelerated program usually occurs in the junior year, careful selection of undergraduate courses beginning in the freshman year is essential. Students should talk with an advisor in the department of Physics as early as possible.

In the spring of the junior year, students should

  • take the GMAT
  • apply for admission to the Graduate School and the MBA program

Requirements for Combined Accelerated BA in Physics/MBA in Business Administration

College Liberal Arts Component (61 hours max)
Hours reduced by courses meeting more than one requirement
See additional CLER area requirements and available
AP credit on p. 71.
Special CLER area requirement for this program:
Mathematics (MT)- required: MAT 191 (see C below)
Natural Science (NS)- required for the CPS
component: CHE 111, PHY 291 (see B & C below)
Social and Behavioral Sciences (SB)-
required ECO 201 (See D below) and two other SB courses
Maximum hours
Total Hours (reduced)
Physics Major (BA) Requirements (28 hours)
Calculus-based Physics: PHY 291 (meets part of CLER
NS/CPS requirement), 292
Modern Physics and Lab: PHY 321, 321L
Mechanics and Lab: PHY 2323, 323
Electricity/Magnetics and Lab: PHY 325, 325L
Thermal Physics: PHY 327
Opics and Lab: PHY 425, 425L
Senior Seminar: PHY 500
Total hours
Related Requirements (23 hours)
Chemistry: CHE 111 (meets part of CLER
NS/CPS requirement), 112, 114, 115
Calculus: MAT 191 (meets CLER MAT requirement),
292, 293
Differential Equations: MAT 390
Computer Science: CSC 130
Total hours
Note: The BS degree in Physics is possible if the student also takes PHY 521, 523, and 525.
MBA Prerequisites (18 hours)
ISM 110 (prerequisite for ECO 250)
ECO 201 (also meets part of CLER SB requirement),
202, 250
ACC 201, 202
Total hours
Total Undergraduate Requirements
Other Undergraduate Electives
Total Undergraduate Semester Hours
Related Requirements for the MBA (43.5 hours)
Senior Year (7.5 hours)
MBA 601, 604 (Fall)
MBA 605, 606, 607 (Spring)
Summer Following Senior Year (4.5 hours)
Internship and 4.5 credits
Graduate or 5th Year (24 hours)
Required foundation and strategic management
level requirements; electives
Summer (3 hours)
Remaining required and elective courses
Total MBA Semester Hours


For Undergraduates

203 Conceptual Astronomy (3:3). No student may receive credit for both this course and either 209 or 235.

Introduction to astronomy. Knowledge gained of day and night sky by use of binoculars, telescopes, and other simple instruments and how to observe and measure properties of astronomical objects. Basic concepts of solar system, stellar evolution, and cosmology. [NS, CPS]. (FA,SP)

205 Conceptual Physics (3:3). No student may receive credit for this course if credit has previously been earned for 101, 102, 211, 212, 291, or 292. Registration in laborary (PHY205L) optional.

Introduction to basic laws of physics made by extensive use of demonstrations. Concepts emphasized and mathematical manipulations held to a minimum. [NS, CPS]. (FA,SP) (Formerly PHY 305)

205L Conceptual Physics Laboratory (1:0:3).

The discovery approach will be used to conduct experiments in mechanics, fluids, heat, electricity and magnetism, optics and modern physics. [NS, CPS]. (FA,SP) (Formerly PHY 305)

209 Astronomy: The Solar System (3:3). - No student may receive credit for both this course and 203.

Introductory study of the solar system. Sun and planets studied with special attention to results of recent planetary exploration. Telescopic and naked-eye observations of the constellations and planets. 209 intended to complement 235, although each course is independent of the other. No science or math background beyond the level of high school algebra required. [NS, CPS]. (FA)

211, 212 General Physics I, II (4:3:3), (4:3:3). Pr. 211 pr. for 212. - No student may receive credit for 211 or 212 if credit has previously been earned for 291 or 292.

Introduction of laws and properties of matter, sound, heat, optics, electricity, and magnetism. Algebra and trigonometry used in development of this material. [NS, CPS]. (FA-211, SP-212) (Formerly PHY 101,102)

235 Astronomy: The Universe (3:3). - No student may receive credit for both this course and 203.

Introduction to stars, galaxies, and cosmology. Emphasis on conceptual approach to such topics as the evolution of stars, the formation of galaxies, interstellar communication, and the Big Bang. Sky observations utilizing the UNCG telescopes included. 235 intended to complement 209, although each course is independent of the other. No science or math background beyond the level of high school algebra required. [NS, CPS]. (SP)

291 General Physics I with Calculus (4:3:3). Pr. MAT 191, co. MAT 292. - No student may receive credit for this course if credit has previously been earned for 211 or 101.

Basic principles of mechanics, heat, and sound developed using the calculus. 291 together with 292 constitute a one-year general physics course utilizing calculus and including laboratory experiences. [NS,CPS]. (FA)

292 General Physics II with Calculus (4:3:3). Pr. 291 and MAT 292, or permission of instructor. ï No student may receive credit for this course if credit has previously been earned for 212 or 102.

Introduction to basic principles of electricity and magnetism and optics, presented in terms of both classical and modern physics topics. 291 together with 292 constitute a one year general physics course utilizing calculus and including laboratory experiences. [NS, CPS]. (SP)

321 Introduction to Modern Physics (3:3). Pr. 292 (or 101, 102/211, 212 with permission of instructor).

Fundamental concepts of atomic, molecular, nuclear, and solid state physics from quantum-mechanical and special relativity points of view. Topics include special relativity, wave-particle dualism, Schrödinger equation, hydrogen atom, atomic spectra, nuclear structure, radioactivity, nuclear reactions, and molecular and solid state physics. (FA)

321L Modern Physics Laboratory (1:0:3). Pr. 292 (or 101, 102/211, 212 with permission of instructor).

Performance of atomic, nuclear, and solid state physics experiments and analysis of data in a quantitative and scientific manner. Simple computer programs used to study the concepts of error and least-square-fit techniques. (FA)

323 Mechanics (3:3). Pr. 101, 102/211, 212, or 292; co. MAT 293, or consent of instructor.

Mathematical treatment of classical kinematics and dynamics of a particle in a uniform field, in oscillatory motion and simple motions of systems of particles. Analytical and numerical techniques of problem solution stressed. (FA)

323L Classical Physics Laboratory (1:0:3). Pr. 292 (or 101, 102/211, 212 with permission of instructor).

Performance of experiments emphasizing concepts of classical physics. Topics include force, energy, resonance, and relaxation. (FA)

325 Electricity and Magnetism I (3:3). Pr. 292 and MAT 293.

A study, developing and using techniques of vector algebra and calculus, of topics in the theory of static electric and magnetic fields including the divergence and Stokesí theorems and the law of Gauss, Biot-Savart, and Ampere. Application to the properties of conductors, dielectric, and magnetic materials. (SP)

325L Electricity and Magnetism Laboratory (1:0:3). Pr. 323, MAT 390, or consent of instructor.

Performance of electricity and magnetism and electronic experiments with analysis of these basic phenomena as applied to research laboratory. (SP)

327 Thermal Physics (3:3). Pr. 292 (or 101, 102/211, 212 with permission of instructor).

Properties of matter developed by combining thermodynamic reasoning with molecular theory. (SP)

331, 332 Experimental Physics (1:0:3), (1:0:3). Pr. two advanced courses in physics taken concurrently or completed.

Advanced courses in laboratory techniques as involved in special laboratory problems.

333 Selected Topics (1 to 3).

Primarily intended for those who are not physical science majors. Topics vary with instructor and with semester. Contemporary topics may include subjects such as analysis of physical resources, their inherent energy limitations and new sources of energy (such as solar, geothermal, etc.); development and adaptation of nuclear energy to electric power plants and armaments systems and the ensuing environmental and political problems; ideas involved in special relativity, cosmology, and quantum mechanics for those with little mathematical background; importance of understanding physical laws in development of art, music, and architecture; relationships between physical laws and communications. No previous science course required. Interested student should inquire at Physics and Astronomy Department office for further details. Selected topics for science majors may also be given upon request.

334 Energy Options and the Environment (3:3).

Energy dilemma facing the U.S. Fundamentals of fission and fusion discussed and military and commercial uses of nuclear energy analyzed. Risks and benefits of fossil fuel use, extent and uses of geothermal energy, basic elements of wind energy, and feasibility of biomass use studied. Passive and active solar energy fundamentals and techniques studied and demonstrated.

345 20th Century Physics: A Liberal Art (3:3). Pr. junior, senior standing, or consent of instructor.

20th century developments in description of physical universe, including small (quantum mechanics), fast (Einsteinís relativity), energetic (nuclear). Emphasize understanding, societal impact, minimal mathematics.

375 Science of Nuclear Weapons/Arms Control (3:3). Pr. MAT 119 or equivalent.

Principles of nuclear weapons, strategies of their use. Science of weapons, effects, arms control efforts and problems.

425 Optics (3:3). Pr. 325 or permission of instructor.

Analytical treatment of geometrical optics (thin and thick lenses, image formation, theory of optical instruments) and physical optics (electromagnetic waves, interference, polarization, diffraction, optical properties of materials). (SP)

425L Optics Laboratory (1:0:3). Pr. 321L, 325L, or permission of instructor.

Performance of geometrical and physical optics experiments with both microwaves and visible light. (SP)

493 Honors Work (3-6). See prerequisites under Honors Program, XXX 493 (p. 379).

For Advanced Undergraduates

and Graduate Students

500 Seminar (1 to 3).

Selected topics of current interest in physics are studied.

501, 502 Conceptual Physics for Teachers (3:3), (3:3). - Credit not applicable to MS degree in Physics.

The basic laws of physics are introduced by extensive use of demonstrations. Concepts are emphasized and mathematical manipulation is minimal. Teaching materials and strategies are developed.

510 Apparatus and Instrumentation for Teaching (3:3). Pr. consent of instructor.

Principles of design, construction, maintenance, and use of demonstration and laboratory apparatus and instrumentation are studied. Safe use of equipment, materials choice and substitutions, and functionality tests are included.

512 Electronics for Scientists (3:2:3). Pr. permission of instructor or head of student's major department.

Electronic circuits useful for measurement, signal processing, and control. This course is especially designed to meet needs of experimental scientist.

513 Microcomputer Interfacing for Scientists (3:2:3). Pr. permission of instructor.

Methods and techniques of electronic connection between computer and other devices and programming methods to facilitate use of the computer as a laboratory instrument are introduced. Assembly language used primarily.

519 Advanced Laboratory (1 to 3:0:3 to 9). Pr. 321L and 323L.

Principles of design and execution of laboratory experiments are introduced, with emphasis on developing the capability to do independent experimentation.

520 Selected Topics in Physics (3:3). Pr. consent of instructor.

A topic of special interest is studied in depth.

521 Modern Physics with Quantum Mechanics (3:3). Pr. 321 and 325.

Modern theories of matter are studied by applying quantum mechanics to atomic, molecular, nuclear, and solid state systems.

523 Analytical Mechanics (3:3). Pr. 323, MAT 390.

Classical laws of particle motion are extended to the treatment of general motion of a rigid body, noninertial reference frames, generalized coordinates, normal coordinates, and to topics and techniques based on calculus of variations.

525 Electricity and Magnetism II (3:3). Pr. 325.

Continuation of 325. The properties of time-varying electric and magnetic fields, including Faraday's law, and the development of Maxwell's equations are studied. Results are applied to alternating current circuit theory, electromagnetic waves, and radiation.

530 Astrophysics (3:3). Pr. 291, 292, 321, 325, 323.

Current understanding of the structure and evolution of stars and galaxies is emphasized. Properties of the interstellar medium and cosmological models are studied in some detail.

589 Experimental Course: Biophysics (3:3). Pr. PHY 327 or CHE 461.

Exploration of principles behind several biophysical techniques; examination of how these techniques are used in research to address problems of biological structure and function. (Offered FA96)

595 Individual Study (1 to 3). Pr. consent of instructor.

The student and at least one member of the graduate faculty will develop a plan to study a topic of particular interest to the student.

For Graduate Students Only

600 Graduate Seminar (1-3:1-3)

601 Teaching Concepts in Physics and Astronomy (3:3)

603, 604 General Physics for Teachers (3:3), (3:3).

605a, b Advanced - Placement Physics for Teachers (3:3), (3:3).

606 Advanced - Placement Physics for Teachers (3:3).

607, 608 Modern Physics for Teachers (3:3), (3:3).

610 Theoretical Physics for Teachers (3:3)

612 Experimental Physics for Teachers (1 to 3).

621 Quantum Mechanics I (3:3).

622 Quantum Mechanics II (3:3).

623 Classical Dynamics (3:3).

625 Electrodynamics (3:3).

627 Statistical Physics (3:3).

631, 632 Solid State Physics (3:3), (3:3)

640 Nuclear Physics (3:3).

650 Theoretical Physics (3:3).

695 Individual Study (1 to 3).

699a, b Thesis (3), (3).

800 Graduate Registration (0).


Contact: University Registrar's Office
Registrar, UNCG, PO Box 26170, Greensboro, NC 27402-6170 (336) 334-5946

URO Home