Due: Mon. Apr. 19, 2010.

First, read Sections 7.2.1. and 7.2.2. Then answer the following questions.

Question 1 (10%)
Consider the equivalence rule 7.12a of the textbook. Note that \(x \) does not occur free in \(C \) in this equivalence. Prove 7.12a using other equivalences. That is start with the left-hand-side of 7.12a, and use other equivalences to transform the lhs to equivalent formulas until you obtain the right-hand-side of 7.12a (or vice-versa). Write down your work step by step very clearly, stating which equivalence you are using for each step.

Question 2 (10%)
Repeat question 1 for equivalence 7.12b.

Question 3 (10%)
Repeat question 1 for equivalence 7.12c.

Question 4 (10%)
Repeat question 1 for equivalence 7.12d.

Question 5 (20%)
Similar to Questions 1-4, prove Equivalence 7.7a and 7.7b using other equivalences (in particular, you can use equivalence 7.6 in your proof).

Question 6 (10%)
Use equivalences to construct a prenex normal form for the following wff. Show your work. Write down the number of the equivalence used at each step.

\[
\forall x \forall y ((\exists z (p(x, z) \land p(z, y)) \rightarrow g(x, y))
\]

Question 7 (10%)
Use equivalences to construct a prenex disjunctive normal form for the following wff. Show your work. Write down the number of the equivalence used at each step.

\[
\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)
\]

Question 8 (20%)
Use equivalences to construct a prenex conjunctive normal form for the following wff. Show your work. Write down the number of the equivalence used at each step.

\[
\forall x \forall y \forall z (p(x, y) \land p(y, z) \rightarrow p(x, z)) \land \forall x \neg p(x, x) \rightarrow \forall x \forall y (p(x, y) \rightarrow \neg p(y, x))
\]