Due: Thu Feb 17, 2011.

First, read Section 7.1, exercises for Section 7.1, and solutions to selected exercises in textbook. Then answer the following questions.

Question 1 (10%)
Write down the proposition denoted by the following expression, where the variables take values in the domain \(\{0, 1\} \).
\[\forall y \exists x \ p(x, y) \]

Question 2 (10%)
Write down a quantified expression over some domain to denote each of the following propositions or predicates.
\[q(0) \lor q(1) \]
\[p(x, 0) \land p(x, 1) \]

Question 3 (10%)
Explain why the following expression is a wff.
\[\exists x \forall y \ (p(y) \rightarrow q(f(x), y)) \]

Question 4 (10%)
For the following wff, label each occurrence of the variables as either free or bound:
\[\forall y \ q(y) \land \neg p(x, y) \]

Question 5 (20%)
Let \(B(x) \) mean \(x \) is a bird, let \(W(x) \) mean \(x \) is a worm, and let \(E(x, y) \) mean \(x \) eats \(y \). Find an English sentence to describe the following expression:
\[\forall x \exists y \ (E(x, y) \rightarrow B(x) \land W(y)) \]
\[\forall y \ (W(y) \land \exists x \ (B(x) \land E(x, y))) \]

Question 6 (10%)
Let \(e(x, y) \) mean that \(x = y \), let \(p(x, y) \) mean that \(x < y \), and let \(d(x, y) \) mean that \(x \) divides \(y \). For the following statement about the natural numbers, find a formal quantified expression.

Any two nonzero natural numbers have a common divisor.

Question 7 (10%)
Given the wff \(W = \exists x \ p(x) \rightarrow \forall x \ p(x) \), find all possible interpretations of \(W \) over the domain \(\{a, b\} \). Also, give the truth value of \(W \) over each of the interpretations.

Question 8 (10%)
Find a model for each of the following wffs:
\[\exists x \ p(x) \rightarrow \forall x \ p(x) \]
\[\forall x \ (p(x, f(x)) \rightarrow p(x, y)) \]

Question 9 (10%)
Find a countermodel for each of the following wffs:
\[\exists x \ p(x) \rightarrow \forall x \ p(x) \]
\[\forall x \ (p(x, f(x)) \rightarrow p(x, y)) \]