Question 1
Given the relation scheme \(R = \{A, B, C, D, E\} \) and the FDs \(A \rightarrow B, BD \rightarrow E, \) and \(C \rightarrow D \):
(a) Determine all the attributes that are functionally determined by \(AC \). Use the Algorithm from the textbook.
(b) Find all candidate keys of \(R \).

Question 2
Consider the relation scheme \(R = \{A, B, C, D, E\} \), with the following functional dependencies:
\(A \rightarrow BC \)
\(CD \rightarrow E \)
\(B \rightarrow D \)
\(E \rightarrow A \)
Find all candidate keys of \(R \). Note that, in general, a relation may have several candidate keys.
SHOW YOUR WORK.

Question 3
(a) Is it possible to have a relation (instance) on the scheme \(R = \{A, B, C, D\} \) that satisfies the FDs \(A \rightarrow CD \) and \(D \rightarrow B \) but violates the FD \(A \rightarrow B \)? If it is possible, then write down such a relation with the fewest number of tuples possible. If it is not possible then prove (justify, argue) why it is not possible.
(b) Is it possible to have a relation (instance) on the scheme \(R = \{A, B, C\} \) that satisfies the FDs \(A \rightarrow C \) and \(B \rightarrow C \) but violates the FD \(A \rightarrow B \)? If it is possible, then write down such a relation with the fewest number of tuples possible. If it is not possible then prove (justify, argue) why it is not possible.

Note: In the above questions, if an instance exists, then it is possible to find one with only two tuples.