An elementary proof of a theorem of Delange. (English, French summaries)

Let $\omega(n)$ be the number of distinct primes dividing the positive integer n and for real $x \geq 2$ let $\mathcal{G}(x) = \sum_{n \leq x} (\omega(n) - \log \log x)^2$. P. Turán (1934) proved that $\mathcal{G}(x) \ll x \log \log x$ and stated that $\mathcal{G}(x) = x \log \log x + o(x \log \log x)$. H. Delange (1971) refined the Selberg analytic method to obtain the asymptotic development

$$
\sum_{n \leq x} \omega(n) = x \log \log x + Bx + \sum_{m=1}^{k} B_m \frac{x}{(\log x)^m} + O \left(\frac{x}{(\log x)^{k+1}} \right).
$$

In this paper, by using the Mertens formula

$$
\sum_{p \leq x} \frac{1}{p} = \log \log x + B + O \left(\frac{1}{\log x} \right),
$$

and the Murty bound

$$
\sum_{p \leq x/2} \frac{1}{p \log(x/p)} \ll \frac{\log \log x}{\log x},
$$

the author proves that

$$
\sum_{pq \leq x} \frac{1}{pq} = (\log \log x)^2 + 2B \log \log x + C + O \left(\frac{\log \log x}{\log x} \right),
$$

from which, and by Abel partial summation exclusively, he derives the values of the first and second moment of $\omega(n)$ to obtain

$$
\mathcal{G}(x) = x \log \log x + \theta x + O \left(\frac{x \log \log x}{\log x} \right),
$$

where θ is an effective constant given in the paper.