For Whom the Mind Wanders, and When
An Experience-Sampling Study of Working Memory and Executive Control in Daily Life

Michael J. Kane, Leslie H. Brown, Jennifer C. McVay, Paul J. Silvia, Inez Myin-Germeys, and Thomas R. Kwapil

University of North Carolina at Greensboro and University of Maastricht, Maastricht, The Netherlands

ABSTRACT—An experience-sampling study of 124 undergraduates, pretested on complex memory-span tasks, examined the relation between working memory capacity (WMC) and the experience of mind wandering in daily life. Over 7 days, personal digital assistants signaled subjects eight times daily to report immediately whether their thoughts had wandered from their current activity, and to describe their psychological and physical context. WMC moderated the relation between mind wandering and activities’ cognitive demand. During challenging activities requiring concentration and effort, higher-WMC subjects maintained on-task thoughts better, and mind-wandered less, than did lower-WMC subjects. The results were therefore consistent with theories of WMC emphasizing the role of executive attention and control processes in determining individual differences and their cognitive consequences.

People who differ in cognitive ability, as measured by conventional intelligence tests, have different life experiences. On average, those with higher general intelligence earn better school grades, attain more education, secure more prestigious occupations, are less often killed in automobile accidents, and assume lower incarceration risk than do those with lower intelligence (Gottfredson, 2002). But does cognitive ability predict people’s subjective experience of life events? Personality research suggests that people of higher intelligence are modestly more “open to experience” (aesthetically sensitive, novelty seeking, unconventional, curious) than are people of lower intelligence (Ackerman & Heggestad, 1997). Yet we know of no scientific studies concerning the in-the-moment, dynamic phenomenology of cognitive ability. This is unfortunate because cognitive-mechanistic theories of intelligence, whether emphasizing sensory discrimination, processing speed, or working memory, implicitly predict that variation in these mental systems’ effectiveness should have dramatic consequences for everyday information processing and mental life. Therefore, in the present study, we examined whether working memory capacity (WMC), an important individual differences variable measured in the laboratory, predicts people’s subjective experience of task-unrelated thought, or mind wandering, in daily life.

WMC IN THE LABORATORY

Researchers often assess WMC with complex span tasks, which present short lists of stimuli for subjects to remember in serial order. These tasks differ from simple span tasks (such as digit span tasks) in that memoranda are presented in alternation with a secondary task (Conway et al., 2005). For example, in a reading span (RSPAN) task, subjects might memorize short lists of letters, with each letter preceded by an unrelated sentence to judge for meaningfulness; in an operation span (OSPAN) task, each letter is preceded by an equation to verify. The insertion of secondary tasks between memory items means that subjects are required to recall information that is periodically unattended (Barrouillet, Bernadin, & Camos, 2004) and vulnerable to proactive interference (Lustig, May, & Hasher, 2001).

WMC tasks are of increasing theoretical and practical interest because their scores reliably predict individual differences in many higher-order cognitive abilities, such as comprehension, learning, and fluid intelligence (Barrett, Tugade, & Engle, 2004; Kane, Hambrick, & Conway, 2005). WMC tasks thus measure...
something important and general. Engle and Kane (2004) proposed that WMC task performance is influenced by many psychological processes, but its broad prediction of ability derives from domain-general executive-control mechanisms. According to their executive-attention theory, these general control mechanisms principally maintain or recover access to information (stimulus representations or goals) outside of conscious focus, and they are most important in contexts providing concurrent distraction and interference from prior experience.

Indeed, people with higher WMC outperform those with lower WMC on attention tasks requiring the active maintenance of novel goals in order to override habitual responding (Kane, Bleckley, Conway, & Engle, 2001). In Stroop tasks, for example, if few trials reinforce the goal to ignore the color words and name their hues (because most words and hues match), low-WMC subjects frequently respond according to habit by reading the words (Kane & Engle, 2003). We have argued that such goal neglect reflects an inability to keep goals consistently active and accessible enough, in the moment, to control thought and behavior according to novel demands. Low-WMC subjects seem to periodically lose focus on their goals, or “zone out” (Schooler, Reichenle, & Halpern, 2004), when executive control is challenged.

WMC IN DAILY LIFE?

Individual differences in WMC predict performance on formal intellectual tasks in daily life, such as the SAT (Daneman & Merikle, 1996). Such findings indicate that WMC is not merely a laboratory phenomenon. That said, as with intelligence, little is known about how psychological experiences, especially those that occur in everyday contexts, might differ depending on WMC. Experimental research suggests that individual differences in WMC predict the regulation of thought and behavior, with lower-WMC individuals being more prone to distraction and impulsive error (Kane & Engle, 2003). One might therefore predict that in everyday life, lower-WMC subjects would be more vulnerable to mind wandering than higher-WMC subjects.

Then again, not all of life’s contexts demand executive control (Bargh & Ferguson, 2000). WMC should therefore predict thought flow (i.e., propensity to mind wander) primarily in life situations that replicate the laboratory requirement to sustain focused concentration on goal-directed behavior through considerable self-regulation and mental effort. By the executive-attention view of WMC (Engle & Kane, 2004), then, mind wandering—defined as thoughts or images that are not directed toward one’s current activity—would represent an occasional, but consequential, cognitive failure that people with lower WMC should be more vulnerable to than are people with higher WMC. Challenging intellectual activities are unlikely to be performed well in the absence of focused, executive attention, and so these contexts should be most diagnostic of WMC-related variation in off-task thinking.

EXPERIENCE-SAMPLING METHODOLOGY

We examined the relation between laboratory-assessed WMC and self-reported thought focus in daily life by using the experience-sampling methodology (ESM; Csikszentmihalyi, Larson, & Prescott, 1977). ESM is a widely used, within-day assessment technique that randomly prompts subjects to complete brief questionnaires (Scollon, Kim-Prieto, & Diener, 2003). Its particular strengths are (a) multiple measurements in people’s daily environment, enhancing reliability and ecological validity; (b) reports of immediate experience, minimizing retrospective bias; and (c) assessment of contextual influences on experience.

In our study, subjects were prompted to report their thoughts during their daily routines. In contrast to less constrained thought-sampling procedures in which subjects continuously verbalize or record their thoughts (e.g., Antrobus & Singer, 1964; Klinger, 1978), our procedure required subjects to answer only a few closed-ended questions about their experience and context at unpredictable times. Our method was thus similar to assessing task-unrelated thoughts during laboratory tests (Singer, 1978; Smallwood & Schooler, 2006) by periodically probing subjects to categorize their recent thoughts as being on-task or off-task.

Considerable research has demonstrated the reliability and validity of probed thought reports, in and out of the laboratory. Most laboratory investigations have examined mind wandering during vigilance or reading tasks, and they have found, for example, that task-unrelated thoughts increase with slower stimulus rates, experimenter-induced anxiety, and less executive-demanding tasks (Antrobus, 1968; Grodsky & Giambra, 1990–1991; Teasdale et al., 1995). Also, people whose thoughts wander more frequently perform their primary tasks more poorly than people whose thoughts do not wander as frequently (Schooler et al., 2004), and these individual differences in mind wandering are reliable across time and different tasks (Giambra, 1995; Grodsky & Giambra, 1990–1991) and are predicted by disorders of attention and mood (Giambra, Grodsky, Belongie, & Rosenberg, 1994–1995; Shaw & Giambra, 1993). In daily life, ESM studies have shown that 30 to 40% of reported thoughts are classifiable as mind wandering (Klinger & Cox, 1987–1988), that adolescents’ concentration improves during challenging activities in which they are skilled (e.g., Moneta & Csikszentmihalyi, 1996), and that most off-task thoughts represent subjects’ “current concerns” rather than fantasy (Klinger, 1978).

OVERVIEW OF THE PRESENT STUDY

In a novel combination of ESM and cognitive psychology methods, we tested whether an objective, laboratory assessment of WMC would predict the subjective, feral experience of mind wandering in daily life. We thus addressed a fundamental question about the nature of cognitive ability—Do people who differ in intellectual capability also differ in subjective experience?
while also investigating a strong prediction of attentional WMC theories—Do people who differ in WMC also differentially experience the disruptive effects of mind wandering in daily life, at least in cognitively demanding contexts?

To answer these questions, we tested WMC in a large sample of young adults, and in an ostensibly unrelated study, we assessed their daily-life experiences of mind wandering for 1 week. Several times daily, subjects indicated whether their thoughts were focused on their current activity and answered questions about their current context. Although WMC might predict mind-wandering rates overall, given its generality, an executive-attention theory of WMC most strongly predicts that lower-WMC subjects should mind-wander more than higher-WMC subjects in life situations requiring substantial cognitive control and focused concentration (Engle & Kane, 2004).

METHOD

Subjects

Of the 394 undergraduates who completed WMC screening, 126 volunteered for the subsequent ESM study to partially fulfill a course requirement. We collected usable ESM data from 124 subjects (35 male, 88 female, 1 not identified), ages 17 through 35 years ($M = 19.34, SD = 2.41, N = 123$); the subjects were self-identified as 67% Caucasian, 25% African American, 2% Hispanic, 3% Asian, and 3% “other.”

WMC Screening

In a 60-min session, subjects completed three complex span measures: OSPAN, RSPAN, and symmetry span (SSSPAN) tasks. In these automated tasks, short lists of to-be-remembered items were presented, with each item preceded by an unrelated processing task with a response deadline (Unsworth, Heitz, Schrock, & Engle, 2005). The deadline was tailored to each task and subject on the basis of latencies ($M \pm 2.5$ SDs) for 15 processing-only practice items. The OSPAN processing task was verifying a simple equation involving a multiplication or division and then an addition or subtraction, the RSPAN processing task was verifying whether a 10- to 15-word sentence was meaningful, and the SSPAN processing task was verifying whether a grid pattern was vertically symmetrical. For all tasks, each processing stimulus was presented until the subject responded. The subjects were then instructed to think about the content of their thoughts and 3 questions about thought content (all ratings were on a Likert scale from 1, not at all, to 7, very much; see Table 1). All subjects, regardless of mind wandering, answered 18 Likert-scale questions about their context (see Table 2).

Subjects received training in the ESM data-collection procedure in a 60-min session. The experimenter explained and provided examples of mind wandering and emphasized that subjects should take immediate stock of their thoughts upon hearing the PDA signal, and that their responses should reflect what they had been thinking or doing immediately before the beep. Subjects completed a practice questionnaire and were

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Questionnaire Items Pertaining to Thought Content and Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. At the time of the beep, my mind wandered to something other than what I was doing.</td>
<td></td>
</tr>
<tr>
<td>2. I was surprised that my mind had wandered.</td>
<td></td>
</tr>
<tr>
<td>3. I allowed my thoughts to wander on purpose.</td>
<td></td>
</tr>
<tr>
<td>4. I was daydreaming or fantasizing about something.</td>
<td></td>
</tr>
<tr>
<td>5. I was worrying about something.</td>
<td></td>
</tr>
<tr>
<td>6. I was thinking about normal, everyday things.</td>
<td></td>
</tr>
</tbody>
</table>

Note. Item 1 required a “yes” (coded as 1) or “no” (coded as 2) response; items 2 through 6 were skipped if the response was “no.” Items 2 through 6 were answered on a scale from 1 to 7 ($1 = not at all, 4 = moderately, 7 = very much$).
TABLE 2
Contextual Predictors of On-Task Thoughts Versus Mind-Wandering Episodes

<table>
<thead>
<tr>
<th>Predictor</th>
<th>b</th>
<th>SE</th>
<th>t(123)</th>
<th>pwp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative predictors: sleepiness, stress, disliked activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What I'm doing right now is boring.</td>
<td>-0.032</td>
<td>0.004</td>
<td>-9.13*</td>
<td>≥.99</td>
</tr>
<tr>
<td>I would prefer to do something else right now</td>
<td>-0.030</td>
<td>0.003</td>
<td>-9.01*</td>
<td>≥.99</td>
</tr>
<tr>
<td>I feel anxious right now</td>
<td>-0.025</td>
<td>0.005</td>
<td>-5.30*</td>
<td>≥.99</td>
</tr>
<tr>
<td>Right now, there is a lot going on around me</td>
<td>-0.015</td>
<td>0.003</td>
<td>-4.71*</td>
<td>≥.99</td>
</tr>
<tr>
<td>What I'm doing right now is stressful.</td>
<td>-0.016</td>
<td>0.004</td>
<td>-3.90*</td>
<td>≥.99</td>
</tr>
<tr>
<td>What I'm doing right now is related to schoolwork.</td>
<td>-0.011</td>
<td>0.003</td>
<td>-3.62*</td>
<td>.996</td>
</tr>
<tr>
<td>I feel tired right now</td>
<td>-0.010</td>
<td>0.004</td>
<td>-2.35*</td>
<td>.927</td>
</tr>
<tr>
<td>Positive predictors: happiness, competence, focus, enjoyment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I had been trying to concentrate on what I was doing.</td>
<td>0.060</td>
<td>0.006</td>
<td>10.59*</td>
<td>≥.99</td>
</tr>
<tr>
<td>I like what I'm doing right now</td>
<td>0.034</td>
<td>0.004</td>
<td>8.73*</td>
<td>≥.99</td>
</tr>
<tr>
<td>I feel happy right now</td>
<td>0.019</td>
<td>0.005</td>
<td>4.08*</td>
<td>≥.99</td>
</tr>
<tr>
<td>I'm good at what I'm doing right now.</td>
<td>0.010</td>
<td>0.005</td>
<td>2.22*</td>
<td>.912</td>
</tr>
<tr>
<td>Null predictors: challenging, novel, important activities; substance use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Number of alcoholic beverages since last signal]</td>
<td>0.027</td>
<td>0.015</td>
<td>1.77</td>
<td>.942</td>
</tr>
<tr>
<td>[Number of cigarettes since last signal]</td>
<td>0.027</td>
<td>0.016</td>
<td>1.72</td>
<td>.932</td>
</tr>
<tr>
<td>[Number of caffeinated beverages since last signal]</td>
<td>0.017</td>
<td>0.011</td>
<td>1.54</td>
<td>.192</td>
</tr>
<tr>
<td>What I'm doing right now is challenging.</td>
<td>-0.005</td>
<td>0.004</td>
<td>-1.19</td>
<td>.938</td>
</tr>
<tr>
<td>What I'm doing right now is unusual for me.</td>
<td>0.005</td>
<td>0.004</td>
<td>1.08</td>
<td>.656</td>
</tr>
<tr>
<td>It takes a lot of effort to do this activity.</td>
<td>-0.004</td>
<td>0.004</td>
<td><1</td>
<td>.611</td>
</tr>
<tr>
<td>What I'm doing right now is important.</td>
<td>0.004</td>
<td>0.004</td>
<td><1</td>
<td>.593</td>
</tr>
</tbody>
</table>

Note. All predictors were questionnaire items. Except for the items pertaining to substance abuse (in brackets), they were answered on a 7-point scale anchored by not at all (1), moderately (4), and very much (7). The scale for substance abuse ranged from 0 beverages/cigarettes (1) to 6 or more beverages/cigarettes (7). Higher scores on the dependent variable indicate more on-task thought and less mind wandering.

*p < .05, pwp > .875.

Statistical Analyses

ESM data have a hierarchical structure in which questionnaire responses (Level 1 data) are nested within participants (Level 2 data), and so they are best analyzed with multilevel or hierarchical linear modeling (e.g., Nezlek, 2001; Schwartz & Stone, 1998). We focused our analyses primarily on the cross-level interactions of the relations between Level 1 ESM variables (mind wandering and its contextual correlates) and the Level 2 variable (WMC). Cross-level interactions indicate that within-person associations at Level 1 vary as a function of the Level 2 variable. For example, the relation between mind wandering and boredom (both Level 1, within-person variables) might change as a function of WMC (a Level 2, between-persons variable), with higher-WMC subjects staying mentally on task regardless of boredom and lower-WMC subjects mind-wandering more with increasing boredom. We evaluated cross-level interactions by estimating the effect of WMC on the within-person Level 1 slopes, using the equation $\hat{b}_1 = \gamma_{10} + \gamma_{11}(WMC) + \mu_1$, where γ_{10} is the mean of the Level 1 slope, γ_{11} is the effect of WMC, and μ_1 is the error term. In addition, we computed the intercept of the Level 2 analyses using the formula $\hat{b}_0 = \gamma_{00} + \gamma_{01}(WMC) + \mu_0$, where γ_{00} is the mean value of the Level 1 dependent measure, γ_{01} is the effect of WMC, and μ_0 is the error term. The γ_{01} coefficient provides information comparable to that of the unstandardized regression weight of the Level 2 predictor (WMC) on the Level 1 dependent variable.

In all analyses, we group-centered the Level 1 ESM predictors (i.e., high or low values on any variable, such as boredom, were relative to each subject's own scores) and grand-mean-centered the Level 2 scores for WMC (Luke, 2004; Paccagnella, 2006); as in simple regression, dependent variables were not centered. Some data departed from normality, so we calculated parameter estimates using robust standard errors (Hox, 2002). For null-hypothesis tests, we used an alpha of .05; we converted p values to p_{wp} (the probability of replicating an effect's direction given similar methods; Killeen, 2005).

RESULTS AND DISCUSSION

Subjects completed an average of 43.5 ($SD = 9.5$, range = 20–60) usable ESM questionnaires, completion rate did not correlate...
significantly with mind-wandering rate, \(r(124) = .05 \), or WMC, \(r(124) = .14 \), although the weak correlation with WMC may be replicable \((p_{rep} = .30) \).

Rate and Phenomenology of Mind Wandering

The rate of mind wandering was consistent with that found in prior work. Subjects reported mind-wandering at almost one third of the signals (mean rate = .30), but there was considerable variation around that mean \((SD = .17, range = .00–.92) \). On occasions when subjects reported off-task thought, they generally expressed little surprise that their mind had wandered \((M = 2.40, SD = 0.96) \) and indicated that they had mentally disengaged on purpose \((M = 3.99, SD = 1.18) \). Their off-task thoughts focused most on everyday things \((M = 4.34, SD = 1.02) \), significantly less on fantasies \((M = 3.77, SD = 1.18) \), typically less on worries \((M = 3.14, SD = 1.12) \), and still less on concerns \((M =1.99, SD = .99) \). Mind wandering about typical events and plans was thus a common experience (Klinger, 1978), but its frequency varied widely among subjects.

Contextual Predictors of Mind Wandering

We first analyzed whether self-reported mind wandering was systematically associated with particular contexts. As depicted in Table 2, subjects’ thoughts wandered more when they were tired or stressed, when they were in stimulating-to-chaotic environments, and when they were involved in boring or unpleasant activities (including schoolwork). Subjects’ minds wandered less when they felt happy and competent, when they concentrated, and when they were involved in enjoyable activities. The importance, novelty, or challenge of activities, however, did not significantly predict mind wandering (nor did recent use of caffeine, cigarettes, or alcohol, although the \(p_{rep} \) values for these weak effects suggest replicability). Most of these findings are not surprising, but they support the validity of subjects’ ESM responses. Indeed, the fact that not all our intuitions were confirmed (e.g., challenging or important activities did not discourage mind wandering) suggests that responses were not determined by folk theories or demand characteristics.

Mind Wandering and WMC

As expected, laboratory-assessed WMC was unrelated to the overall rate of on-task thoughts versus mind wandering in daily life, averaged across all contexts, \(b = 0.024, SE = 0.022, t(122) = 1.22 \). Analyses of cross-level interactions therefore tested whether WMC affected the within-person relation between mind wandering and any contextual (Level 1) variables, particularly those that mirrored laboratory contexts in which WMC predicts successful executive control.

1 Data from 123 subjects were analyzed; 1 subject never reported mind wandering.

2 Although cross-level interactions involving ratings of challenge and effort were similar, these items were not redundant: Their Level 1 correlation across contexts was substantial, but imperfect, \(r(5369) = .65 \).
We therefore tested whether WMC moderated the association between mind wandering and the unimportance, unpleasantness, or stress of the task; feelings of anxiety, boredom, or unhappiness; or poor fit between the task and subjects’ ability. As shown in Table 3, WMC played no moderating role in the case of these variables. Regardless of WMC, subjects’ minds wandered more when they were bored, were stressed, were bad at their current activity, and disliked their current activity; regardless of WMC, mind wandering was independent of the current activity’s importance. Thus, WMC-related differences in mind wandering did not arise during relatively unpleasant or nonengaging moments.

These null effects are important for several reasons, particularly for the light they shed on the significant interactions we reported for WMC and cognitive demand. First, like the null effect of WMC on mind wandering overall, they show that WMC is not systematically related to the willingness or ability to report one’s cognitive foibles; high-WMC subjects did not simply resist admitting mind wandering. Second, they demonstrate that the significant interactions involving WMC did not represent subjects’ folk theories, because beliefs about the relation between mind wandering and boredom are certainly as strong as those relating mind wandering to concentration and challenge. Third, and finally, they suggest that WMC-related differences in mind wandering and thought control were not purely motivational, for lower-WMC subjects were not more likely than higher-WMC subjects to mentally disengage from activities they found boring, unpleasant, or unimportant. Instead, individual differences in WMC predicted mind wandering selectively, only when life activities posed great challenges and required considerable effort and concentration.

Mind Wandering and Metaconsciousness

In laboratory tasks, low-WMC subjects make frequent errors that may reflect attention lapses. Such results suggest they have a deficit in *metaconsciousness* (Schooler, 2002), whereby they fail to realize when their thoughts drift from their primary activities. However, our ESM data showed no relation between WMC and surprise at having mind-wandered, $b = -0.001, SE = 0.111, t(121) < 1$, and surprise interacted with WMC and only one contextual predictor (“there is a lot going on around me”), so this interaction may be spurious. That said, we are not confident that “surprise” is the most appropriate phenomenological description of metaconscious dissociations (or the zoning-out experience), and given the very low base rate of strong “surprise” responses in our data, future work must investigate the relations among WMC, metaconsciousness, and mind wandering more fully.

SUMMARY AND CONCLUSIONS

In a unique effort to study the phenomenology of cognitive ability in everyday life, we found that individual differences in WMC, objectively measured in the laboratory, predicted people’s subjective experience of mind wandering during particular daily situations. Future research should assess how such mind-wandering differences might vary with actual and perceived performance on activities. Do high-WMC people have the resources to mentally “time share” and still perform tasks well? Do
low-WMC people mind-wander more in more challenging, effortful tasks because they are actually performing less well or because they believe they are performing less well? Subjective assessments of performance in daily life, as well as laboratory assessments of both mind wandering and objective task performance, will help answer these questions.

The present study was motivated by an executive-attention theory of WMC variation (Engle & Kane, 2004), which holds that the impressive, general predictive power of WMC tasks derives from their tapping an ability to maintain access to information and goals in the face of distraction, interference, and shifts of conscious focus. People with lower WMC are less able than people with higher WMC to sustain goal-directed thought and behavior in the face of competition from environmental and mental events. Moreover, according to an executive-control theory of mind wandering (Smallwood & Schooler, 2006), off-task thoughts represent the withdrawal of executive resources from one’s ostensible primary task toward mental pursuit of other personal goals, thus leaving fewer resources for the primary task.

We therefore predicted, and found, that people of lower WMC mind-wandered more than people of higher WMC when their activities required considerable effort and focused concentration: WMC predicted attention control during life’s challenges. However, WMC variation did not affect the relation between mind wandering and either the enjoyment or the importance of an activity, indicating that WMC’s effects on thought control were not merely motivational or artifactual. Although our central findings of WMC-variant related in real-world executive control are consistent with several attention-related WMC theories (Braver, Gray, & Burgess, 2007; Cowan, 2005; Lustig et al., 2001), they are not predicted by nonattentional views, for example, proposals that WMC and complex span performance reflect primarily domain-specific skills, such as reading, math, or spatial ability (e.g., MacDonald & Christiansen, 2002), or particular strategic behaviors (e.g., McNamara & Scott, 2001).

WMC broadly predicts performance on attention-control tasks and the experience of attentional lapses, in the laboratory and in everyday life. Our study also suggests that mind wandering is a promising phenomenon in which to examine executive control (Smallwood & Schooler, 2006), and that ESM is a promising method for examining the subjectivity of cognitive function and dysfunction—and testing cognitive theory—in ecologically valid contexts.

Acknowledgments—We thank Keli Adams, Gena Barbee, Ben Cline, and Shoua Lor for assistance in data collection.

REFERENCES

TABLE 3

Cross-Level Interactions Involving Working Memory Capacity (WMC), Rate of Mind Wandering, and Feelings About the Current Activity

<table>
<thead>
<tr>
<th>Interaction</th>
<th>b</th>
<th>SE</th>
<th>t(122)</th>
<th>p<sub>crit</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>WMC × Mind Wandering × Feeling Anxious</td>
<td>−0.008</td>
<td>0.006</td>
<td>−1.37</td>
<td>.743</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Stressful Activity</td>
<td>0.006</td>
<td>0.004</td>
<td>1.33</td>
<td>.736</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Enjoying Activity</td>
<td>0.007</td>
<td>0.005</td>
<td>1.30</td>
<td>.724</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Boring Activity</td>
<td>−0.005</td>
<td>0.004</td>
<td>−1.06</td>
<td>.362</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Doing Schoolwork</td>
<td>−0.003</td>
<td>0.003</td>
<td><1</td>
<td>.615</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Good at Activity</td>
<td>−0.002</td>
<td>0.005</td>
<td><1</td>
<td>.325</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Importance of Activity</td>
<td>−0.001</td>
<td>0.004</td>
<td><1</td>
<td>.203</td>
</tr>
<tr>
<td>WMC × Mind Wandering × Feeling Happy</td>
<td>−0.000</td>
<td>0.006</td>
<td><1</td>
<td>.133</td>
</tr>
</tbody>
</table>

Note. All interactions listed in this table were nonsignificant, p > .15.

(Received 6/29/06; Revision accepted 9/5/06; Final materials received 9/12/06)
Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Description</th>
<th>Author Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>No Queries</td>
<td></td>
</tr>
</tbody>
</table>