MATH 191: CALCULUS I (FALL 2012)

Course number: MAT 191-02
Course title: Calculus I
Credits: 3
Meetings: TR 12:30 - 1:45 PM, PETT 227

Prerequisites: The prerequisite for entering MAT 191 is to achieve a grade of at least a C in MAT 151, a C- is not enough. This may be substituted by an acceptable score on the mathematics placement test. You are responsible for all of the material from Chapter 1 of the textbook. It will not be covered in class. Be sure that you read this chapter and fill in any gaps in your knowledge by testing yourself on the exercises there; some answers are in the back of the book.

Instructor information:
Instructor: Dr. Dan Yasaki d_yasaki@uncg.edu
Homepage: http://www.uncg.edu/math/faculty/d_yasaki/teaching.html
Office Hours (146 Petty): Mondays 8:30 - 9:30 AM, Tuesdays & Thursdays 11:00 - noon

For whom planned: MAT 191 is a GE core course (GMT). It is the first course in the Calculus sequence.

Catalog description: Limits and introductory differential calculus of the algebraic and transcendental functions of one variable.

Student learning outcomes: MAT 191 provides students an opportunity to appreciate certain concepts in fundamental mathematics, especially functions, limits, and differential calculus. The emphasis is on abstract reasoning, not routine manipulations, and this course satisfies the Mathematics (GMT) requirement of the General Education Program. Upon successful completion of this course, students will achieve the following learning objectives. The student will be able to:

- employ problem solving strategies in fundamental mathematics that go beyond routine mathematics operations and data manipulation,
- reason in mathematical systems,
- formulate and use mathematical models and apply mathematical concepts effectively to solve real-world problems,
- evaluate decisions based on mathematically valid principles, and
- communicate mathematical solutions clearly and effectively.

Teaching methods and assignments for achieving learning outcomes: Abstract reasoning is a part of every lesson and homework in this course. The student, through regular and frequent attention to the lessons and homework questions, will achieve the learning objectives delineated in the preceding section. Multiple homework questions are assigned for each
lesson and are designed to reinforce the learning objectives. The student will demonstrate achievement of learning objectives through satisfactory completion of graded assignments and tests. The questions on graded assignments and tests are designed to evaluate specific parts of the learning objectives and in this way the grade reflects the attainment of the objectives.

Evaluation and grading: Semester averages are rounded to the nearest point, and letter grades are assigned on a 10 point scale.

- A+: 97–100
- B+: 87–89
- C+: 77–79
- D+: 67–69
- A: 93–96
- B: 83–86
- C: 73–76
- D: 63–66
- F: 0 – 59
- A−: 90–92
- B−: 80–82
- C−: 70–72
- D−: 60–62

The following table is the breakdown of how much credit each assignment category is worth towards your final grade:

- Homework assignments (10%)
- Quizzes (10%)
- Three tests (16.66..% each for a total of 50%)
- Final exam (30%)

Required text:

Thomas’ Calculus Early Transcendentals, 12th edition

You can access the book online using MyLab (course ID yasaki79755) at

Final examination: The Final Exam covers Chapters 2–4 of the textbook, all of the material covered during the semester. The exam is three hours long and will be given on Thursday, December 6, 2012 at noon.

Academic Integrity Policy: Each student is required to sign the Academic Integrity Policy on all major work submitted for the course.

> I have abided by the UNCG Academic Integrity Policy on this assignment.

Signature ____________________ Date ____________

More information can be found at http://academicintegrity.uncg.edu/complete/

Attendance Policy: Attendance is mandatory. Two consecutive absences or four total absences during the semester may result in a failing grade, regardless of semester average. Attendance will be measured using quizzes.

Additional information:

1. Students with Disabilities: If you have a documented disability and wish to discuss academic accommodations, please contact me as soon as possible. You are responsible for contacting the ODS in 215 EUC (334-5440, http://ods.dept.uncg.edu/) and for arranging the necessary forms for me to fill out and sign. Without these forms the services provided by the ODS will not be available. ODS cannot schedule or reschedule tests without consent from the instructor.
Table 1. Tentative Calendar

<table>
<thead>
<tr>
<th>Tuesday</th>
<th>Thursday</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21</td>
<td>2.1, 2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>8/28</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>9/4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>9/11</td>
<td>Test 1</td>
<td>3.1</td>
</tr>
<tr>
<td>9/18</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>9/25</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>10/2</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>10/9</td>
<td>Test 2</td>
<td>3.8, 3.9</td>
</tr>
<tr>
<td>10/16</td>
<td>Fall Break</td>
<td>3.10</td>
</tr>
<tr>
<td>10/23</td>
<td>3.11</td>
<td>4.1</td>
</tr>
<tr>
<td>10/30</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>11/6</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>11/13</td>
<td>4.6</td>
<td>Review</td>
</tr>
<tr>
<td>11/20</td>
<td>Test 3</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>11/27</td>
<td>4.7</td>
<td>4.8 Last class</td>
</tr>
<tr>
<td>12/4</td>
<td>Reading Day</td>
<td>[Final exam] exam begins at noon</td>
</tr>
</tbody>
</table>

(2) Assignments Policy:
 (a) Assignments are due at the beginning of class. Late assignments will be accepted as late as 5 PM on the due date for half credit and not accepted after that.
 (b) Written assignments must be
 (i) legible.
 (ii) stapled (if more than one page).
 (iii) not torn from a spiral bound notebook.

(3) Absence Policy: You are responsible for all missed material. Any missed assignment, test, or final exam will result in a score of 0. Make-up tests and final exam will be given only if you receive prior approval for a valid excuse by contacting me at least one week in advance.

(4) Copyright Policy: Selling or purchasing notes from classes for commercial gain is a violation of the UNCG Copyright Policy.

 http://policy.uncg.edu/copyright/

 Any student who sells notes taken in class for commercial gain, or who purchases notes taken by another student for commercial gain, is in violation of this policy and, by extension, is committing a violation of the Student Code of Conduct.

 http://studentconduct.uncg.edu/policy/code/

(5) Email Policy: All email correspondence should be made using your UNCG email account. You must check your email regularly for updates and announcements.

(6) Calculator Policy: Calculators are not allowed.
Topical outline:

<table>
<thead>
<tr>
<th>Section</th>
<th>Material covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Limits and Continuity</td>
</tr>
<tr>
<td>2.1</td>
<td>Rates of Change and Tangents to Curves</td>
</tr>
<tr>
<td>2.2</td>
<td>Limit of a Function and Limit Laws</td>
</tr>
<tr>
<td>2.3</td>
<td>The Precise Definition of a Limit</td>
</tr>
<tr>
<td>2.4</td>
<td>One-Sided Limits</td>
</tr>
<tr>
<td>2.5</td>
<td>Continuity</td>
</tr>
<tr>
<td>2.6</td>
<td>Limits Involving Infinity; Asymptotes of Graphs</td>
</tr>
<tr>
<td>3.</td>
<td>Differentiation</td>
</tr>
<tr>
<td>3.1</td>
<td>Tangents and the Derivative at a Point</td>
</tr>
<tr>
<td>3.2</td>
<td>The Derivative as a Function</td>
</tr>
<tr>
<td>3.3</td>
<td>Differentiation Rules</td>
</tr>
<tr>
<td>3.4</td>
<td>The Derivative as a Rate of Change</td>
</tr>
<tr>
<td>3.5</td>
<td>Derivatives of Trigonometric Functions</td>
</tr>
<tr>
<td>3.6</td>
<td>The Chain Rule</td>
</tr>
<tr>
<td>3.7</td>
<td>Implicit Differentiation</td>
</tr>
<tr>
<td>3.8</td>
<td>Derivatives of Inverse Functions and Logarithms</td>
</tr>
<tr>
<td>3.9</td>
<td>Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>3.10</td>
<td>Related Rates</td>
</tr>
<tr>
<td>3.11</td>
<td>Linearization and Differentials</td>
</tr>
<tr>
<td>4.</td>
<td>Applications of Derivatives</td>
</tr>
<tr>
<td>4.1</td>
<td>Extreme Values of Functions</td>
</tr>
<tr>
<td>4.2</td>
<td>The Mean Value Theorem</td>
</tr>
<tr>
<td>4.3</td>
<td>Monotonic Functions and the First Derivative Test</td>
</tr>
<tr>
<td>4.4</td>
<td>Concavity and Curve Sketching</td>
</tr>
<tr>
<td>4.5</td>
<td>Indeterminate Forms and L'Hôpital's Rule</td>
</tr>
<tr>
<td>4.6</td>
<td>Applied Optimization</td>
</tr>
<tr>
<td>4.7</td>
<td>Newton's Method</td>
</tr>
<tr>
<td>4.8</td>
<td>Antiderivatives</td>
</tr>
</tbody>
</table>

1If time permits.