Basic Problem

• What does a public-key signature verification tell you?
 Verification parameters include public key, and successful verification says “Only someone holding the corresponding private key could have made this signature.”

• What do you want a signature verification to tell you?
 Probably something like “Joe Smith signed this.”

• Problem: What assurance do you have that the public key really belongs to Joe Smith?

What is a Digital Certificate?

• Associates an identity/properties with a public key
 – Identity can be person’s name, website, e-mail, ...
 – Properties can be valid key uses, age of individual, access rights granted, ...

• Signed by someone you trust
 – Signature is trusted party vouching for ID/key pair
 – Role is similar to a notary public

• Some typical properties of certificates:
 – Good for a set time (validity period)
 • Must get a new certificate after expiration
 – Certificates may be revoked
More on Certificates

- Common types of certificates:
 - X.509 standard (version 3)
 - PGP certificates

- Who signs certificates? Several possibilities:
 - Independent “Certification Authority” organization
 - Disinterested third party – company or government
 - Examples: Verisign, Deutsche Telekom, Entrust, AOL, …
 - Internal (organizational) certification authority
 - Organization controls certificates for employees or clients
 - Could be just an individual you trust
 - This is how PGP certificates are typically certified

X.509 Certificates

- Most prevalent type of digital certificate
- Related to X.500 directory services
- An integral part of the Web
 - All major web browsers and servers support X.509
 - CA “industry” (Verisign, etc.) built around X.509
- Also part of secure e-mail specifications
 - S/MIME
- Currently “version 3” of X.509
 - Includes a flexible “extension field” capability

X.500 Names
(Also called “Distinguished Names”)

- Hierarchical naming
- Parts of names are attribute/value pairs
- Example attributes:
 - C=country
 - ST=state
 - L=locality
 - O=organization
 - OU=organizational unit
 - CN=common name
Important “Additional Information”

- **How does a CA state how they do business?**
 - A Certification Practices Statement (CPS) is a human-readable statement of practices used by CA
 - Based on this, a person/vendor may decide whether to trust or not trust the CA
 - Problem: What if CPS becomes a dead link? Trust the CA?

- **Where to obtain the Certification Revocation List (CRL)**
 - Called a CRL Distribution Point (CDP)
 - Certificates may be revoked due to
 - Private key compromised
 - Incorrectly issued certificate
 - CA compromised
 - Properties change
 - CRL contains unexpired revoked certificates
 - Current (2018) size of Symantec CRL: 1,211,730 bytes (34,610 entries)
 - Newer technology: OCSP (Online Certificate Status Protocol)

Example: Amazon Certificate

(Extension fields removed)

- **Data:**
 - Version: 3 (0x2)
 - Issuer: C=US, O=Symantec Corporation, OU=Symantec Trust Network, CN=Symantec
 - Class 3 Secure Server CA – G4
 - Validity
 - Not Before: Oct 6 00:00:00 2017 GMT
 - Not After: Sep 21 23:59:59 2018 GMT
 - Signature Algorithm: sha256WithRSAEncryption

- **Subject Public Key Info:**
 - Public Key Algorithm: rsaEncryption
 - Modulus:
 - 00:de:59:92:15:5c:f4:ae:8e:c4:ee:8e:ff:b3:97:
 - [Deleted] ...
 - Exponent: 65537 (0x10001)

- **Signature Algorithm:** sha256WithRSAEncryption

Example: Amazon Certificate, Part 2

Extension fields

- **X509v3 extensions:**
 - Subject Alternative Name:
 - DNS:amazon.com, DNS:amzn.com, DNS:buybox.amazon.com, ...
 - Basic Constraints:
 - CA:FALSE
 - Key Usage:
 - critical
 - Digital Signature, Key Encipherment
 - TLS Web Server Authentication, TLS Web Client Authentication
 - Certificate Policies:
 - Policy: 2.23.140.1.2.2
 - CPS: https://d.symcd.com/cps
 - User Notice:
 - Explicit Text: https://d.symcd.com/rpa
 - Authority Key Identifier:
 - CRL Distribution Points:
 - Full Name: Full Name
 - URI: http://ss.symcd.com/ss.crl
 - Authority Information Access:
 - OCSP - URI:http://ss.symcd.com
 - CA Issuers - URI:http://ss.symcd.com/ss.crt
Certificate Chains
(Hypothetical)

"Trust Anchor" or "Root CA"

Subject: UNCG CA
UNCG Public Key
Issuer: Verisign

Subject: Steve Tate
Steve's Public Key
Issuer: UNCG CS CA

Subject: UNCG CA
UNCG Public Key
Issuer: Verisign

Subject: UNCG CS CA
UNCG CS Public Key
Issuer: UNCG CA

Subject: Steve Tate
Steve's Public Key
Issuer: UNCG CS CA

Public Key Infrastructure (PKI)

• A PKI is “a collection of technologies and policies for creating and using digital certificates.” [Garfinkel and Spafford]

• Many people originally envisioned an official digital ID system
 – In reality: Very little personal ID done with certificates – mostly used for server identification
 – Could change if security tokens or smart cards become more prevalent! Maybe smartphones?

Another Trust Model: PGP “Web of Trust”

• PGP is “Pretty Good Privacy”
 – Originally for e-mail encryption/signing
 – Now regularly used for software verification
 – Originally written by Phil Zimmerman
 – Now several free and commercial versions
 – GPG (“Gnu Privacy Guard”) is a Free-Software alternative (they use only free algorithms)

• Trust model is less hierarchical than X.509
• I can sign keys and distribute them
 – Anyone who trusts me can use me as a CA!
 – Difference between "trusted" and "valid" keys
PGP/GPG Keyservers

• Problem: How do you get public keys?
 – Note: In PGP public keys are always certificates

• Solution: Keyservers – databases of keys
 – You can submit your own keys
 – You can look up keys by name or e-mail address
 – Support integrated into many e-mail programs

• Keyservers can be accessed in many ways
 – LDAP
 – HTTP
 – E-mail

Keyserver example – WWW interface
Sending an encrypted email – Step 1: Look up the key

Keyserver example – WWW interface
Sending an encrypted email – Step 2: Find the right one - who vouches for it?
Keyserver example – WWW interface
Sending an encrypted email – Step 3: Download key (to import into PGP)

Some problems with certificates

- Private keys are not people
- Distinguished names are not people
- There are too many Robert Smiths
- X.509 v3 doesn't allow selective disclosure
- Ubiquitous certificates could lead to privacy issues
- How do you loan a key?
- Signatures are “brittle”

- But overall: Not perfect, but solves some important problems